
Conformal Calibration
A Post-Hoc Method for Robust Deep Q-Learning

Alex Inch1

MSc Machine Learning

Supervised by Lorenz Wolf and Mirco Musolesi

Submission date: 8th September 2025

1Disclaimer: This report is submitted as part requirement for the MSc Machine Learning at UCL. It
is substantially the result of my own work except where explicitly indicated in the text. The report may
be freely copied and distributed provided the source is explicitly acknowledged

Abstract

The Deep Q-Network (DQN) is a powerful reinforcement learning algorithm which has achieved

superhuman performance in domains including game playing, by effectively combining Q-learning

with deep neural networks for function approximation. However, DQNs fail in the face of dis-

tribution shift due to overoptimism about previously unseen actions. Prior work addresses this

via expensive train-time modifications which require re-tuning the entire training process from

scratch. In this thesis, we propose and evaluate an alternative approach: conformal calibration.

Our method calibrates the value-function of a DQN by observing the agent for as few as 10

episodes, using the apparatus of conformal prediction to derive a theoretically-valid lower bound

on the value function. Experiments on classic control show that a calibrated DQN achieves up to

70% higher reward over a range of distribution shifts, with a nearest-neighbour variant achieving

11% improvement on the more challenging Lunar Lander environment.

Acknowledgements

My deepest thanks to my supervisors Lorenz Wolf and Mirco Musolesi, who were extremely active

and engaged with this project. Thank you for the thought-provoking conversations and feedback.

Thanks also to many friends at UCL who have made this degree and thesis a pleasure: Jeevon

Grewal, Jack Lee, and especially Skye Purchase for painstakingly reviewing this thesis on more

than one occasion.

Beyond UCL, I have had the good fortune to meet many people who have advised and sup-

ported my decision to pause my career and pursue research. My deepest appreciation to Andrew

Haynes, Matt Kaminski, and Colin Gilbert at Evident Insights, as well as Tim Gordon, Jim Tal-

bert and Jeevan Vasagar. I owe immense gratitude to Alexandra Mousavizadeh, who took a chance

on me years ago, and helped foster my initial interest in machine learning.

1

Contents

1 Introduction 1

2 Background 4

2.1 Reinforcement Learning . 4

2.1.1 Introduction to Reinforcement Learning . 4

2.1.2 Q-Learning . 6

2.1.3 Deep Q-Networks . 6

2.1.4 Distribution Shift . 7

2.1.5 Robust RL . 7

2.2 Conformal Prediction . 8

2.2.1 Full Conformal Prediction . 8

2.2.2 Exchangeability . 9

2.2.3 Split Conformal Prediction . 10

2.2.4 Conformal Prediction: Regression . 12

2.2.5 Conformal Inference under Distribution Shift 12

2.3 State-Space Discretisation . 13

2.3.1 Efficient Nearest-Neighbour Search . 14

2.4 Summary . 15

3 Related Work 16

3.1 Overoptimism in DQNs . 16

3.1.1 Double Deep Q-Networks . 17

3.1.2 Conservative Q-Learning . 17

3.2 Conformal Prediction in RL . 18

3.2.1 Multi-Agent RL . 18

3.2.2 Policy evaluation . 19

3.3 Summary . 19

4 Approach 20

4.1 Problem Setup and Notation . 20

4.2 Assumptions of Conformal Prediction . 20

4.3 Theoretical Framework . 21

4.4 State Space Aggregation . 23

4.5 Conformal Calibration Framework . 24

2

4.5.1 One-Sided Split Conformal Inference . 24

4.5.2 Coverage Gap in Continuous Spaces . 24

4.5.3 Uncalibrated regions . 25

4.6 CC-Disc: Discretised Conformal Calibration . 25

4.6.1 Partitioning the State-Action Space . 26

4.6.2 Algorithm (CC-Disc) . 26

4.7 CC-NN: Nearest-Neighbour Conformal Calibration 26

4.7.1 Offline Observation . 26

4.7.2 kNN Quantile at Test Time . 27

4.7.3 Algorithm (CC-NN) . 27

4.8 Summary . 27

5 Results 29

5.1 Experimental Setup . 29

5.2 Results: Performance Evaluation . 31

5.2.1 Cart Pole . 31

5.2.2 Comparison to Baselines . 33

5.2.3 Classic Control and Lunar Lander . 33

5.2.4 Computational Overhead . 34

5.2.5 Limited effect on the Acrobot environment 35

5.2.6 Coverage . 36

5.3 Results: Design Choices and Hyperparameters . 36

5.3.1 Discretisation Methods . 37

5.3.2 Score function comparison . 38

5.3.3 Monte Carlo vs TD Return . 39

5.3.4 Effect of α . 39

5.3.5 Test-time adaptation . 39

5.4 Summary . 41

6 Conclusion 42

6.1 Limitations . 42

6.2 Future Work . 43

6.3 Conclusion . 43

A Pseudocode 52

B Experimental Hyperparameters 54

B.1 DQN hyperparameters . 54

B.2 Conformal Calibration hyperparameters . 54

B.3 Reward Thresholds . 55

C Conformal Prediction for World Models 56

D Generative AI Disclosure 58

3

Nomenclature

Conformal Prediction

α Miscoverage rate

δ Conformal offset, usually denoted by q̂ in CP literature.

ϵpy, ŷq Score function, usually denoted by s or A in CP literature.

C Prediction interval

Dc Calibration set

tα Corrected quantile

Reinforcement Learning

A Action space

β Conservative Q-Learning parameter

η Learning rate

γ Discount factor γ P r0, 1s

Dr Replay buffer

P Set of possible transition kernels

M Nominal environment

M1 Test environment with shifted transition kernel

π Policy

S State space

Qθps, aq Action-value function with parameters θ

tSkuKk“1 Discrete state clusters, with K bins

at Action taken at time step t

P Nominal transition kernel

4

P 1 Shifted transition kernel

rt Reward received at time step t

st State at time step t

Other symbols

Ś

Cartesian product

5

Chapter 1

Introduction

Reinforcement learning (RL) agents learn to take decisions in a given environment to maximise

their expected positive outcome. This is a powerful, natural approach; unlike supervised and

unsupervised learning methods which rely on human-generated data, RL agents learn how to

navigate an environment purely via interaction. In this way, RL agents are able to discover

strategies and approaches which exceed the efficacy and generality of human-engineered solutions.

One success story of modern RL is the Deep Q-Network (DQN) [48], which paired the Q-

learning algorithm [78] with advancements in deep learning following the success of AlexNet in

2012 [31]. In 2015, Mnih et al. [46] showed that a DQN-based agent was able to match or exceed

human skill on a wide range of Atari games, without relying on human-generated data or per-

game tuning. This breakthrough precipitated a wave of interest in deep RL, and the DQN and

its descendants have since been applied to myriad problems including robotics [29], medicine, [41,

80], energy use optimisation [79] and more.

However, one persistent issue with Q-learning and DQN-based agents is perennial overoptimism

due to a maximisation term in the value-function update [69, 21, 22]. This can impede learning,

as an agent mistakenly believes low-value actions to be better than they truly are. In a worst-

case scenario, overoptimism in Q-learning can lead to a total collapse in performance, due to the

so-called “deadly triad” [74, 67, 23].

One important consequence of overoptimism in DQNs is that it leads to brittle policies in the

face of distribution shift [32, 49]. Distribution shift occurs when the environment in which an

agent acts changes; a robot operating on an oil rig might start to rust and move more slowly, or a

self-driving car trained in sunny weather might have to adapt to icy conditions. Distribution shift

is a critical challenge in the real-world deployment of RL agents. The world is complex, and it is

virtually impossible to account for all possible shifts in the environment during training. Agents

which react unpredictably to distribution shift may become unsafe, endangering themselves or

humans in their vicinity. For this reason, it is imperative to train robust policies which maintain

performance in the face of distribution shift.

Most research into robustness works by inducing more pessimistic or conservative policies [49].

Since distribution shift leads agents to out-of-distribution states which they have not experienced

during learning, pessimism about unknown outcomes leads agents to stay in-distribution in the

face of uncertainty. For example, Conservative Q-Learning (CQL) [32] learns a pessimistic lower

1

bound estimate of the likely reward from a state, leading an agent to discount previously-unseen

actions. More broadly, the field of robust RL formalises a pessimistic notion of the environment

[27], either by considering the worst-case outcome at each time step, or treating the environment

as an adversary to the agent.

One issue with these methods, however, is they are typically expensive training-time modifica-

tions. For example, CQL introduces an expensive logsumexp term into the value update. Domain

randomisation, a popular robust RL method [72], requires training an agent many times, over a

range of distribution shifts. Since they modify the training loop, achieving optimal performance

with these methods may also require restarting hyperparameter optimisation from scratch, which

can be costly and challenging; a standard DQN implementation has at least 13 hyperparameters

[57]. In fact, prior work finds that many reported improvements in the deep RL literature can be

attributed to insufficient hyperparameter tuning of baselines [2, 25, 26].

In order to address this problem, we investigate the application of conformal prediction (CP)

[75] to the RL setting. Conformal prediction is a post-hoc method applied to a learned predictor

which allows a practitioner to make finite-sample guarantees about the uncertainty of a prediction

without any distributional assumptions. It works by comparing the prediction over new test points

to prior predictions on a held-out calibration set. By treating a DQN (or any equivalent value-

based method) as a regression function, we can apply conformal prediction to an already-trained

agent, calibrating it without training-time modifications. However, conformal prediction relies on

the assumption that the training data for a learned function is exchangeable—that any shuffled

ordering of the training data is consistent with some fixed joint probability. This property, which

is often trivial in the supervised learning setting where i.i.d. data is assumed, is violated in RL,

as agents experience time-ordered observations in an online manner. In this thesis, therefore, we

will explore the following questions:

• How can conformal prediction be adapted to reinforcement learning to mitigate overoptimism

in DQN agents?

• Which assumptions of conformal prediction can be relaxed to leverage it in a practical

implementation?

By exploring the above questions, we arrive at conformal calibration, a method for lower bound-

ing the value function of a learned DQN to improve robustness. We develop two plug-in variants;

a discretised version, CC-Disc (illustrated in Figure 1.1), stores corrections per state–action bin

and incurs minimal runtime cost, and CC-NN, a nearest-neighbour version, computes corrections

at run-time from previously observed nearby states, trading extra lookup overhead for better

memory scaling with state-space dimension.

We will begin by describing relevant background knowledge in reinforcement learning, con-

formal prediction, and distribution shift in chapter 2. In chapter 3 we proceed to describe prior

work which either addresses overoptimism in DQNs or applies conformal prediction to the RL

setting. Chapter 4 introduces conformal calibration with a theoretical motivation, accompanied

by descriptions of the two different state-aggregation methods used in CC-Disc and CC-NN. We

present empirical results in chapter 5, demonstrating that calibration improves robustness, and

testing design choices. Limitations of this work and potential future directions are discussed in

chapter 6

2

Observe the agent in the
nominal environment

Calibrate its Q-function, computing a lower-
bound using one-sided conformal inference

Deploy with the calibrated Q-
function in a shifted environment

Action

Observation

Action

Observation

Figure 1.1: Illustration of conformal calibration with the CC-Disc algorithm.
Line plots illustrate the true q-function in black, the learned approximation
Qθ in red, and a piecewise lower bounded approximation after calibration (see
§ 3.1.1). The agent does not leverage information from the test-time envi-
ronment; calibration is conducted only on the nominal environment. Earth,
Moon and robot logos used with permission from Freepik, vectorsmarket15 and
Casanova Studio via flaticon.com.

3

https://www.flaticon.com/free-icon/earth_9985721?term=earth&page=1&position=4&origin=search&related_id=9985721
https://www.flaticon.com/free-icon/full-moon_9689786?term=moon&page=1&position=5&origin=search&related_id=9689786
https://www.flaticon.com/free-icon/robot-head_18140703?term=robot+head&page=1&position=53&origin=search&related_id=18140703

Chapter 2

Background

To explain the ideas underpinning conformal calibration, we first introduce the reinforcement learn-

ing (RL) setting, Q-learning and the Deep Q-Network. These are powerful RL algorithms which

have been shown to exceed human-level capability in settings such as Atari videogame-playing

[46]. We also touch on distribution shift in reinforcement learning and the related field of Robust

RL. We introduce conformal prediction, a distribution-free approach to uncertainty estimation

with point predictors. Finally, we introduce background concepts around state-space aggregation

and nearest neighbour search which will be employed as we move into real implementations.

2.1 Reinforcement Learning

2.1.1 Introduction to Reinforcement Learning

The field of reinforcement learning (RL) examines how agents can learn to act through trial-

and-error interactions in an environment, with the goal of maximising long-term reward [67, 28].

Unlike supervised learning, the data distribution is policy-dependent and non-i.i.d.; actions affect

future states and information, creating exploration–exploitation trade-offs and temporal credit-

assignment challenges. The typical RL setting consists of an agent which takes actions a according

to a policy πpa | sq, where s is the state of the environment. Consider the case of a cleaning robot,

as paraphrased from Sutton and Barto [67]. The level of battery charge is the state, and the robot

can execute two actions; collecting rubbish or charging the battery. Note that s can encode both

the internal state of the agent, as well as the external environment. With high battery, a good

policy chooses to collect rubbish,

πpcharge | highq “ 0, πpcollect | highq “ 1.

With low battery, the policy instead chooses to charge the robot’s battery,

πpcharge | lowq “ 1, πpcollect | lowq “ 0.

By doing so, the robot will return its battery to a high level of charge, so that it can go on to collect

rubbish. The change of state following an action is mediated by the transition kernel P p¨ | s, aq,

4

a probability distribution over future states following the agent’s action in a given state. In this

way, the agent interacts with the environment in a loop, taking actions which alter the state of

the environment. This loop can be either episodic, stopping after T timesteps, or infinite-horizon.

The formalism used to describe RL environments is the Markov Decision Process (MDP). In

this work we consider a finite, discounted MDP

M “ pS,A, r, P, γq,

where S and A are measurable state and action spaces, r : S ˆ A Ñ R is a bounded reward

function, P p¨ | s, aq is the transition kernel which dictates how the state changes after actions, and

γ P r0, 1s is the discount factor which trades off near-term vs long-term reward [10, 55]. A policy

πpa | sq induces trajectories ps0, a0, r1, s1, a1, r2, . . . q, where at „ πp¨ | stq, st`1 „ P p¨ | st, atq.

The objective we seek to maximise is the expected discounted return

Jpπq “ E

«

8
ÿ

t1“t

γt1
´t rpst1 , at1 q

ff

.

We define the value and action–value functions as the expected reward from a given state or

state–action pair at timestep t

V πpsq “ Eπ

«

8
ÿ

t1“t

γt1
´trpst1 , at1 q

ˇ

ˇ

ˇ

ˇ

ˇ

st “ s

ff

, Qπps, aq “ Eπ

«

8
ÿ

t1“t

γt1
´trpst1 , at1 q

ˇ

ˇ

ˇ

ˇ

ˇ

st “ s, at “ a

ff

.

They satisfy the Bellman expectation equations

V πpsq “ Ea„πp¨|sq

“

rps, aq ` γ Es1„P p¨|s,aqV
πps1q

‰

,

Qπps, aq “ rps, aq ` γ Es1„P p¨|s,aq, a1„πp¨|s1q

“

Qπps1, a1q
‰

.

The optimal values V ˚psq “ supπ V
πpsq and Q˚ps, aq “ supπ Q

πps, aq obey the Bellman optimality

equations

V ˚psq “ max
aPA

!

rps, aq ` γ Es1„P p¨|s,aqV
˚ps1q

)

,

Q˚ps, aq “ rps, aq ` γ Es1„P p¨|s,aq

„

max
a1PA

Q˚ps1, a1q

ȷ

.

Intuitively, the Bellman optimality equation says that if the optimal value function Q˚ is known

for all state-action pairs, then the optimal strategy is to select the action a1 maximising the

expected value of r ` γmaxa1 Q˚ps, aq. This strategy is known as a greedy policy π˚psq P

argmaxaPA Q˚ps, aq, and if Q˚ is optimal then π˚ is also optimal [55].

The Bellman optimality operator T

pT Qqps, aq “ rps, aq ` γ Es1„P p¨|s,aq

„

max
a1PA

Qps1, a1q

ȷ

is a γ-contraction in ∥¨∥8, so repeated application converges to its unique fixed point Q˚ [10,

12]. These equations underlie value-based RL algorithms like Q-learning; evaluating the value of

5

a policy enables an agent to make decisions based on the expected outcome.

2.1.2 Q-Learning

Q-learning is an RL control algorithm devised by Watkins [78] in 1989. It is tabular—storing an

action-value for each state-action pair ps, aq. Unlike on-policy methods like Sarsa, which directly

follow the policy being optimised [61], Q-learning is an off-policy algorithm which learns from

trajectories generated by an arbitrary behaviour policy µpa | sq ‰ πpa | sq. The off-policy nature

of Q-learning allows it to consider counterfactual events: “what if the agent had taken a different

action?” In contrast to Monte Carlo methods, which update action-values using the full trajectory

of rewards generated during an episode, Q-learning bootstraps—it uses only the immediate reward

and possible value of next states following an observed transition pst, at, rt`1, st`1q.

Qpst, atq Ð Qpst, atq ` η

„

rt`1 ` γmax
a1PA

Qpst`1, a
1q ´ Qpst, atq

ȷ

,

where st, at and rt are the states, actions and rewards observed at timestep t, and η is the

learning rate. A Q-learning agent acts using the greedy policy with respect to its learned action-

values

πpa | sq “

$

’

&

’

%

1, if a “ argmax
a1PA

Qps, a1q

0, otherwise.

2.1.3 Deep Q-Networks

Q-learning is powerful for classic control problems like gridworld navigation and blackjack [67].

However, as a tabular method, it is subject to the “curse of dimensionality”; if a state-action

space has D dimensions, each with n possible values, the number of required table entries grows

exponentially with the dimensionality as Nentries “ nD. In environments with high-dimensional

states, like the pixel-based frame data of an Atari game [8], this leads to more table entries than

can be realistically be visited, inhibiting sample efficiency and generalisation. In continuous state

spaces, tabular methods do not work at all, requiring discretisation approaches like tile coding to

convert the problem into a tabular representation [67].

As a solution, prior work turned to function approximation to output action-values rather

than relying on a lookup table. The first notable application of neural network-based function

approximation to Q-learning was by Riedmiller [59], who introduced Fitted Q-Iteration (FQI) in

2005. FQI solved the Mountain Car environment in around 300 episodes, compared to 300,000 for

a tabular approach over a discretised state space. FQI is a fairly simple extension to Q-learning,

implementing batch updates via supervised learning.

Building on FQI, Mnih et al. proposed the Deep Q-Network (DQN) [47, 46], which introduces

two significant modifications. The first is experience replay, in which the learner maintains a replay

buffer Dr of prior transitions, and uniformly samples from it during training. This improves sample

efficiency as datapoints are reused, as well decorrelating training batches for the neural network

(consider the difference between supervised learning on sorted vs shuffled data). The second

modification is the introduction of a target network, which uses frozen parameters θ´. The target

6

Figure 2.1: Example of distribution shift in the Cart Pole environment, in which
the goal is to keep the pole close to vertical. The agent learns with length=0.5,
but is evaluated on a different length pole, altering the moment of inertia and
hence transition dynamics.

network, which is only updated intermittently, is used for bootstrapping, providing a more stable

learning target. The DQN uses backpropagation to update the Q-network, using a squared TD

error as loss function (alternatives include a MAE or Huber loss)

Lpθq “ Eps,a,r,s1q„D

„

´

r ` γmax
a1

Qθ´ ps1, a1qq ´ Qθps, aq

¯2
ȷ

.

One common issue with the DQN is Q-value overestimation—the max in the update can

lead the learner to overfit to approximation error. Combined with bootstrapping and off-policy

learning (so the agent bootstraps off actions which it never actually sees in the training data),

this overestimation can compound, impeding learning and leading the agent to take risky actions

under distribution shift. We explore this further in § 3.1.

2.1.4 Distribution Shift

A persistent challenge in RL is distribution shift, which occurs when the MDP seen during training

differs from the MDP at test-time. Examples could include a self-driving car trained in sunny

weather and deployed in rain, or a robotics policy trained in a simulator and deployed in the real

world. Distribution shift can affect both the transition kernel P p¨ | s, aq or reward function r, but

in this work we focus only on changes to the transition kernel. Agents which maintain performance

in the face of distribution shift are said to be robust. This is an attractive quality—robust policies

can be safer and reduce the need for retraining as the environment changes [49].

Another form of distribution shift in off-policy methods is the difference in states encountered

between a behaviour and target policy. Although we employ off-policy methods in this thesis, we

focus on distribution shift due to a change of transition kernel, not due to off-policy methods.

2.1.5 Robust RL

One paradigm concerned with mitigating distribution shift is Robust RL, which addresses train-

test discrepancies in the transition kernel, P Ñ P 1, by constructing an uncertainty set of possible

7

transition kernels P Q P 1.

M “ pS,A, r, P, γq (nominal MDP), M1 “ pS,A, r, P 1, γq (test MDP).

It is common to make structural assumptions about P, such as assuming that P 1 lies within a

fixed Kullback-Leibler divergence of the nominal kernel, DKLpP ||P 1q ď ε [58]. Robust RL agents

solve a min-max optimisation problem for the worst case transition kernel. Including the ps, aq-

rectangularity assumption (that the worst MDP-level transition kernel is a combination of the

worst case for each state-action pair), we arrive at a robust learning objective

Jpπq “ inf
P 1PP

E

«

8
ÿ

t1“t

γt1

rpst1 , at1 q

ˇ

ˇ

ˇ

ˇ

ˇ

st1`1 „ P 1p¨|st1 , at1 q

ff

, P “
ą

ps,aq

Ps,a

Although this thesis shares commonalities with Robust RL, we do not make explicit assump-

tions about P or adopt Robust RL methods. Instead, we induce robustness via action-value

conservatism. The Robust RL literature finds that pessimism improves robustness, but can be

limited. Making the most pessimistic assumption possible about P often leads to overly conser-

vative policies, hampering performance on the nominal environment. Consequently, much work

in Robust RL relaxes the assumptions of Robust MDPs to find a reasonable midpoint between

nominal performance and conservatism. This kind of tunable conservatism is an inherent strength

of the conformal prediction approach.

2.2 Conformal Prediction

Conformal prediction, introduced by Gammerman, Vovk and Vapnik in 1998 [17, 62], is a technique

that produces prediction regions for new data points with a guaranteed level of confidence. Unlike

most machine learning methods that provide point predictions, conformal prediction provides a

set of possible labels for a new object, containing the true label with a certain probability (e.g.

95% of the time).

More formally, conformal prediction allows us to construct a prediction set C which contains

the true value y, with a probability 1 ´ α, where α is the user-defined miscoverage rate:

Prry P Cs ě 1 ´ α

Notation. There is significant overlap between RL and conformal prediction notation. For

example, q signifies action-values and quantile corrections respectively, s indicates a state or non-

conformity score, and α a learning rate and miscoverage rate. We use δ for quantile corrections, ϵ

for the nonconformity score and retain α for the miscoverage rate, with η for learning rates. Refer

to the Nomenclature section for a full listing.

2.2.1 Full Conformal Prediction

Vovk’s original paper introduces the idea of full conformal prediction. The method assesses how

“unusual” a new data point pxn`1, ŷq is compared to the existing data pz0, . . . , znq, where zi “

pxi, yiq. This is done using a nonconformity score ϵ : Y ˆ Y Ñ R, where a higher score means the

8

data point is more unusual. Examples of nonconformity scores include absolute residuals |y ´ ŷ|

for regression and a likelihood-score 1 ´ p̂f̂ py | xq for classification.

The full algorithm proceeds as follows. First, propose a candidate value y P Y. Next, compute

nonconformity scores for all data points zi in the training set using the candidate value y. To

compute ϵi, train a predictor f on all other data points z´i

ϵi “ |yi ´ f̂´ipxiq|, ϵn`1 “ |y ´ f̂pxn`1q|.

Next, compute the p-value,

ppyq “
1

n ` 1
p#ti : ϵi ě ϵn`1uq .

The p-value is the rank of the residual ϵn`1 with respect to all residuals ϵi. Intuitively, a high

p-value indicates that the candidate value y would not be unusual compared to the rest of the

data.

Finally, iterate over candidate values y to form a prediction interval C. If the data is exchange-

able (see § 2.2.2), C is statistically guaranteed to achieve the specified coverage rate

Cpxn`1q “ ty P Y : ppyq ě αu , P rrytrue P Cpxn`1qs ě 1 ´ α

Without making any assumptions about the underlying distribution, conformal prediction

enables us to construct a prediction set with finite-sample guarantees. This is remarkably powerful,

but the procedure requires retrainingOpnq times—once for each permutation of the training data—

which is computationally infeasible with modern models. As a tractable alternative, we instead

turn to split conformal prediction, as outlined in § 2.2.3.

Marginal Coverage Conformal prediction guarantees that prediction intervals will contain the

true value ytrue, subject to some miscoverage rate α. This guarantee applies to the marginal

distribution ppyq, but not to the conditional distribution ppy|xq, ie. in general Pr
“

Yi P CpXiq|Xi “

x
‰

ğ 1 ´ α. In fact, Lei and Wasserman [36] prove that it is impossible to achieve conditional

coverage with non-infinite width prediction intervals. For an example distinguishing marginal and

conditional coverage, see Figure 2.4.

2.2.2 Exchangeability

One key assumption leveraged by conformal prediction is exchangeability ; that all possible order-

ings of the training data of an algorithm are equally likely under some underlying joint distribution

p:

ppz1, z2, . . . , znq “ ppzσp1q, zσp2q, . . . , zσpnqq for all permutations σ

This property, which is weaker than the i.i.d. assumption, can often be assumed in supervised

learning. However, exchangeability poses a challenge in reinforcement learning; agents experience

time-ordered observations and state transitions. Exchangeability is, therefore, not satisfied by

default. We discuss this further in § 4.2.

9

Prediction Set: {dog}
True: bird

Prediction Set: {car}
True: car

Prediction Set: {frog}
True: frog

Prediction Set: {ship, truck}
True: ship

Prediction Set: {car, truck}
True: car

Prediction Set: {frog}
True: frog

Prediction Set: {cat, dog}
True: cat

Prediction Set: {bird, deer, frog}
True: deer

Prediction Set: {car, ship}
True: ship

Prediction Set: {frog}
True: frog

Prediction Set: {cat, dog}
True: dog

Prediction Set: {car, truck}
True: truck

Prediction Set: {ship, truck}
True: truck

Prediction Set: {car}
True: ship

Prediction Set: {deer}
True: deer

Prediction Set: {car, truck}
True: truck

Figure 2.2: Examples of split conformal prediction for classification. Generated
using a convnet classifier on the CIFAR10 dataset which achieves 75% accuracy
on the test set [34, 30]. Applying conformal prediction with α “ 0.1, prediction
sets contain the true value on 90% of test points.

2.2.3 Split Conformal Prediction

Due to the significant computational demands of full conformal prediction, it is more common

to employ split conformal prediction. In this paradigm, we partition the available data into a

training set DT and held-out calibration set DC “ tzi “ pxi, yiqumi“1. We fit a predictor f̂ on

DT once, compute nonconformity scores on DC , and use a single empirical quantile to calibrate

prediction sets for new inputs. The method delivers the same finite-sample, distribution-free

marginal coverage as full conformal prediction under exchangeability, at a fraction of the cost [37,

3]. Split conformal prediction proceeds as follows:

1. Fit the model. Train f̂ on DT only.

2. Calibrate. Compute calibration scores

ϵi “ s
`

f̂pxiq, yiq, i “ 1, . . . ,m,

and let ϵp1q ď ¨ ¨ ¨ ď ϵpmq be their order statistics. Define the conformal threshold as the

value corresponding to the 1´α quantile of the residuals. tα here is a rounding factor which,

10

when the quantile falls between discrete values, breaks ties in favour of the larger value.

δ1´α “ Quantiletα
`

tϵiu
m
i“1

˘

, tα “
rpm ` 1qp1 ´ αqs

m
.

3. Predict. For a new input xn`1, return the split conformal prediction set

Cpxn`1q “

!

y P Y : ϵ
´

y, f̂pxn`1q

¯

ď q̂1´α

)

.

Compared to full conformal prediction, the split approach replaces Opnq retrainings with a

single fit, making the method computationally tractable for large models or datasets. An example

is shown in Figure 2.2.

Coverage with a fixed calibration set. With a fixed calibration and training set, the coverage

guarantee of split conformal prediction follows a Beta distribution

Pr
“

Yn`1 P CpXn`1|DC ,DT q
‰

„ Betapmtα, m ` 1 ´ mtαq.

This does not affect theoretical results, which do not condition on the calibration set, but it

is relevant when evaluating empirical coverage. Plots of the coverage for different sizes of the

calibration set are shown in Figure 2.3.

0.80 0.85 0.90 0.95 1.00
Coverage

Pr
ob

ab
ilit

y

m
50
100
500

Figure 2.3: When conditioning on a fixed calibration set, the expected coverage
follows a Beta distribution, narrowing with more calibration examples. Adapted
from a figure by Tibshirani [70].

11

2.2.4 Conformal Prediction: Regression

Another application is conformal prediction on regression. In the deep RL setting, value functions

are examples of common regression functions; outputting typically scalar values for inputs of states

or state-action pairs, with the exception of some distributional approaches which output prediction

quantiles [9]. In this work, we will employ split conformal prediction in the regression setting for

the Q-function of a DQN.

Regression (split conformal). Given a point regressor f̂ : X ÑR, compute calibration resid-

uals on DC ,

ϵi “
ˇ

ˇyi ´ f̂pxiq
ˇ

ˇ, i “ 1, . . . ,m pm “ |DC |q,

and let δ1´α be their p1´αq-empirical quantile with the standard rpm`1qp1´αqs correction. For

a new x, return the symmetric band

Cpxq “
“

f̂pxq ´ δ1´α, f̂pxq ` δ1´α

‰

.

This achieves finite-sample marginal 1´α coverage under exchangeability. Note that this method

scales the prediction interval symmetrically. We will use a one-sided approach, discussed in § 4.5.1.

Conformalised quantile regression (CQR). To adapt to heteroskedastic, asymmetric noise,

fit quantile regressors f̂ℓ, f̂u at levels α{2 and 1 ´ α{2 using a pinball loss. Calibrate one-sided

residuals

ϵℓi “ f̂ℓpxiq ´ yi, ϵui “ yi ´ f̂upxiq,

with thresholds δℓ, δu from their empirical p1 ´ αq-quantiles (using the same rpm ` 1qp1 ´ αqs

index). The prediction set is then

Cpxq “
“

f̂ℓpxq ´ δℓ, f̂upxq ` δu
‰

,

which retains marginal 1 ´ α coverage and typically yields tighter, better-targeted intervals than

symmetric residual bands [60]. The behaviour is illustrated in Figure 2.4. For compatibility with

a standard DQN we do not use quantile regression in this work, but it could be a reasonable

extension to combine conformal calibration with the QR-DQN of Dabney et al. [14].

2.2.5 Conformal Inference under Distribution Shift

Prior work investigates conformal prediction under distribution shift. Although we do not use

these methods in the default CC-Disc or CC-NN algorithms, we test an adaptive variant of

CC-Disc in § 5.3.5. Gibbs and Candès [18] introduces a simple online update to the miscoverage

rate

αt`1 “ αt ` η
´

α ´ I
“

yt R Ctpxtq
‰

¯

,

where α is the user-specified desired miscoverage rate, I is the indicator function, and η is

the learning rate. See Figure 2.5 for an implementation on a toy problem generating Gaussian

noise. Angelopoulos, Barber, and Bates [4] take a similar approach, but rather than modifying

12

0 1 2 3 4 5

20

15

10

5

0

5

10

15

20 Conformal Prediction Region
True Mean
True 10th/90th Quantiles
Calibration data

Figure 2.4: Example of conformal prediction for quantile regression. Generated
using a neural network quantile regressor with a pinball loss and αlo “ 0.1, αhi “

0.9. Note that, although the prediction region achieves marginal coverage over
all data points, it does not satisfy conditional coverage; it over- and under-covers
in different regions of the data.

the miscoverage rate, they propose tweaking the interval size itself,

δt`1 “ δt ` η
´

Iryt R Ctpxtqs ´ α
¯

.

2.3 State-Space Discretisation

DQNs are designed for continuous state-spaces, but as we discuss in § 4.2, conformal calibra-

tion benefits from conditioning on local state-spaces. One solution, which is common in the RL

literature, is state-space discretisation; binning continuous states into discrete-valued features.

Discretisation underpins the CC-Disc method we propose. Methods include:

Uniform binning. For each dimension of the state-action space we find an interval containing

most of the data—such as [5, 95] quantiles. Split this range evenly. Common numbers of bins

per dimension in experiments range from 4-10; higher bin counts harm robustness, due to the

loss of generalisation across unseen state-action pairs. This is simple and locality-preserving, but

suffers from the curse of dimensionality. If d is the dimensionality of the state-space and |A| is

the number of discrete actions K “ |A| ¨ pNbinsq
d.

Tile coding. Tile coding [67] overlays Ntiling uniform grids (“tilings”) with small offsets. A

state activates one tile per tiling, yielding a sparse one-hot encoding. Tile coding still suffers from

the same fundamental limitations in higher-dimensional spaces K „ |A|NtilingsN
d
tiles. However,

tile coding introduces multiple new parameters that require tuning—not just the number of tiles,

but the number of tilings, and how they are formed and offset, which can make it more challenging

to tune.

13

Figure 2.5: Example of adaptive conformal inference [18]. The top row shows
data generated by a Gaussian N pµt, 1q. The middle row shows the adaptive
miscoverage rate αt for different values of the responsiveness hyperparameter η.
The lowest row shows the true coverage rate, with the true and mean coverage
rates shown by the black and blue lines respectively.

Adaptive discretisation. Rather than fixing partitions a priori, tree- or clustering-based schemes

refine where needed. A binary partition recursively splits the space to reduce prediction error,

yielding nonuniform, data-driven cells [45]. More generally, state aggregation maps many s to a

shared index i “ ϕpsq via expert rules, PCA+clustering, or vector quantisation (e.g., learned code-

books), improving memory- and sample-efficiency but introducing approximation bias if dissimilar

states are merged [67, 45, 51].

2.3.1 Efficient Nearest-Neighbour Search

Discretisation methods either face high-dimensionality limits (binning, tile coding) or are difficult

to generalise to arbitrary structures in state-space (PCA, tree, clustering, vector quantisation).

As a simple, flexible approach, we will also consider nearest-neighbour search, defining CC-NN.

Nearest neighbours provide a nonparametric representation for continuous S Ă Rd: given a

query s, retrieve the set of k nearest points, then estimate values or dynamics from neighbours.

A brute-force scan over all data points scales linearly with dimensionality, OpmDq, so in principle

scales more effectively to high-dimensional spaces than simple discretisation techniques. Meth-

ods like k-d trees and ball trees further enhance the efficiency of nearest-neighbour search by

caching locality in trees or hyperballs, although in spaces with more than 20-30 dimensions query

time degrades back towards brute force search [11, 50]. Further extensions to high dimensional

14

Uniform Grid Tile Coding Binary Partition

Figure 2.6: Schematic illustrating discretisation schemes. A uniform grid splits
the space into fixed-width bins. Tile coding overlays multiple offset grids, where
activations are a one-hot-encoding with Ntilings active features. A binary parti-
tion recursively splits the space in a data-driven manner, with coarse aggregation
in unoccupied regions of the space.

spaces require approximate methods like Hierarchical Navigable Small Worlds (as used in vector

databases), which have been proven to scale to hundreds of embedding dimensions and millions

of data points[42].

2.4 Summary

In this chapter we introduced the core components of conformal calibration: the DQN and con-

formal prediction. We have described robustness in the face of distribution shift, the goal of

conformal calibration. Robust RL motivates the idea of pessimism in the face of distribution shift

which we will employ in conformal calibration. In the next section we turn to related work which

mitigates overoptimism and prior literature applying conformal prediction to the RL setting.

15

Chapter 3

Related Work

In this chapter we discuss related work in two strands. The first is prior work addressing the issues

of DQN overoptimism in the face of distribution shift, as mentioned in § 2.1.3, namely the Double

Deep Q-Network and Conservative Q-Learning. The second is previous work applying conformal

prediction to the RL setting. We identify a gaps in the literature around the lack of prior work

on post-hoc refinements to address overoptimism

3.1 Overoptimism in DQNs

DQNs can exhibit serious failure modes. The method relies on bootstrapping, off-policy learning

and function approximation; the three elements of the “deadly triad.” In a worst-case scenario,

this can lead the action-value function to diverge, as demonstrated in both classical and deep RL

settings [6, 74, 23].

More generally, Q-learning is prone to overconfidence. In 1993, Thrun and Schwartz [69]

showed that bounded uniform random errors „ Uniformp´ε, εq, for example due to noise or

function approximation error, lead to a consistent overestimation of action values by γε |A|´1
|A|`1 .

Hasselt, Guez, and Silver [22] investigated the same effect in the deep RL setting, and showed

that even if value estimates are correct on average, estimation error of any kind can drive action-

value estimates away from the true optimal values. Intuitively, this is because the argmax term

over action values biases the agent towards overestimated values, as illustrated by Figure 3.1. This

overoptimism can be problematic under distribution shift, as the agent pursues out-of-distribution

actions which appear beneficial despite never being visited in the training data.

There is substantial work addressing the issue of overestimation as it relates to distribution

shift. One approach, typified by methods like batch-constrained RL, BEAR and BRAC, constrains

the policy to stay close to the empirical behaviour policy observed in offline data by limiting the

actions considered during updates [16, 33, 81]. This shortcuts the deadly triad by preventing an

agent from extrapolating too far from the data distribution. Alternatively, REM [1] addresses

bootstrapping error by using an ensemble of Q-networks.

16

True Function
Approximation

Figure 3.1: Random symmetric approximation error leads to incorrect esti-
mates of the maxima of the action-value function due to the maximisation in
the Q-learning update. Vertical lines indicate argmax, which is biased by the
approximation error. This figure is inspired by a graphic presented by Sergey
Levine at RLC 2024 [39].

3.1.1 Double Deep Q-Networks

Double Deep Q-learning [22], an extension to the tabular Double Q-learning approach proposed

by Hasselt [21], directly addresses the overestimation bias inherent in the standard DQN target

calculation. The core insight of Double DQN (DDQN) is to decouple the selection of the best next

action from the evaluation of its value. While standard DQN uses the same target network for

both operations, DDQN uses the online network Qp¨; θq to select the action and the target network

Qp¨; θ´q to evaluate it. The target value Yt is thus modified from the standard DQN target,

JDQN “ rt ` γmax
a1

Qpst`1, a
1; θ´

t q,

to the DDQN target,

JDDQN “ rt ` γQ
`

st`1, argmax
a1

Qpst`1, a
1; θtq; θ

´
t

˘

.

By separating selection and evaluation, DDQN avoids the self-reinforcing cycle where an overesti-

mated value is both selected and used for the update. While the online network may still select an

action due to overestimation, it is unlikely that the independent target network, starting from a

separate initialisation, also overestimates the value of that same action. This simple modification

substantially reduces overestimation, leading to more stable training and more accurate final value

estimates.

3.1.2 Conservative Q-Learning

The work most closely related to conformal calibration is Conservative Q-Learning (CQL), pro-

posed by Kumar et al. [32]. CQL also attempts to address the issue of overestimation in Q-learning,

with the aim of improving robustness to off-policy distribution shift. Instead of trying to learn a

precise point estimate of the action-values, like DDQN, CQL modifies the learning objective to

lower bound the action-values,

17

Lpθq “ β¨

´

Es„D, a„µpa|sqrQps, aqs ´ Es„D, a„π̂βpa|sqrQps, aqs

¯

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

Conservative Q-learning modification

`
1

2
Es,a,s1„D

”

`

Qps, aq ´ T Qps, aq
˘2
ı

loooooooooooooooooooooomoooooooooooooooooooooon

Normal Q-learning loss

.

(3.1)

Here µ is an arbitrary policy, and π̂β is the empirical behaviour policy observed in the training

data. The first two terms respectively minimise Q-values while maximising them over actions taken

in the dataset. This encourages pessimism about unseen state-action pairs, while maintaining

predictions for seen states. The authors derive a variant of the above loss function by choosing

the µ which maximises the current Q-iterate, subject to some regulariser Rpµq,

L1pθq “ max
µ

Lpθq ` Rpµq.

As a regulariser, they choose the KL divergence against a prior uniform distribution ρpa | sq “

Unifpaq, ie. Rpµq “ ´DKLpµ || ρq, the expectation over µ collapses to a logsumexp over actions.

This algorithm, which we compare to as a baseline, is referred to as CQLpHq,

LH “ β ¨ Es„D

”

log
ÿ

a

exp
`

Qps, aq
˘

´ Ea„π̂βpa|sqrQps, aqs

ı

`
1

2
Es,a,s1„D

”

`

Qps, aq ´ T Qps, aq
˘2
ı

.

An important aspect of CQL highlighted by the authors is gap-expansion; increasing the differ-

ence between Q-values for transitions the agent has seen and those which are out-of-distribution.

Gap-expansion discourages the selection of risky values due to Q-function overestimation, leading

the agent to stay in-distribution when facing distribution shift.

However, as with the DDQN, CQL is a training-time modification, so can require hyperpa-

rameter re-tuning to adapt to an existing workflow, on top of the additional tuning needed for the

hyperparameter β.

3.2 Conformal Prediction in RL

Since the resurgence of interest in conformal prediction precipitated by Lei and Wasserman [36]

in 2013, there has been a growing body of work applying it to the reinforcement learning setting

[43]. Most prior work elides issues with exchangeability by focussing on trajectory-level predictions

(see § 2.2.2). These works predominantly focus on the applications of trajectory prediction for

multi-agent settings and policy evaluation.

3.2.1 Multi-Agent RL

Substantial prior work applies conformal prediction to planning in multi-agent settings, using

conformal prediction to bound the likely position of other agents during a trajectory [40, 24, 65,

64, 35]. Conformal prediction gives hard guarantees about future position, but the flexibility of

the user-specified miscoverage rate α can mitigate over-pessimism and freezing. These methods

rely on planning from the initial state, recovering exchangeability. Lekeufack et al. [38] extend

the ideas of adaptive conformal inference to the trajectory-prediction problem. This approach is

capable of updating conformal bounds in an online manner during a trajectory, yielding improved

18

performance in online decision-making. Sheng et al. [63] extends conformal prediction for trajec-

tory planning to the partially observable MDP setting, in which the full environment state is not

available to the agent.

CAMMARL [19] also operates in the multi-agent RL setting. Instead of trajectory-planning,

it uses conformal prediction to output a prediction set of actions another agent may take at each

time-step, which the ego agent can then incorporate into decision-making.

3.2.2 Policy evaluation

Another natural application of conformal prediction to RL is the use of conformal prediction to

give guarantees about the outcome of an agent operating in a known environment, known as pol-

icy evaluation. Dietterich and Hostetler [15] apply conformal prediction to the policy evaluation

problem, proposing an algorithm for whole-trajectory bounds on the reward an agent will likely

achieve during episodes in the nominal environment. Taufiq et al. [68] recover exchangeability

by considering contextual bandits. Their method, COPP, uses conformal prediction to give pre-

diction intervals in off-policy evaluation, to assess policies before deployment. Since there are no

trajectories in the contextual bandit setting, distribution shift due to off-policy methods reduces

to covariate shift, a problem addressed in the conformal prediction literature by Tibshirani et al.

[71]. Zhang, Shi, and Luo [82] similarly use conformal prediction to output prediction intervals in

the off-policy evaluation setting.

3.3 Summary

We identify two large gaps in the literature which conformal calibration addresses. Prior work

in RL addresses overoptimism via train-time modifications, necessitating the costly retraining

of agents from scratch. Earlier work applying conformal prediction to RL focusses primarily

on trajectory prediction and policy evaluation. Instead, conformal calibration is a post-training

stage which can be retrofitted to any value-based method. It uses conformal prediction to inform

action-selection at inference, inducing pessimism and therefore robustness.

19

Chapter 4

Approach

We introduce conformal calibration for deep Q-learning. This method uses conformal prediction

to estimate a distribution-free lower bound on the Q-function of a DQN, demonstrably improving

robustness to distribution shift in multiple RL settings. Additionally, we discuss the theoretical

properties of this approach.

We introduce two variants, CC-Disc and CC-NN, which leverage discretisation and nearest

neighbour search respectively to localise conformal calibration, mitigating exchangeability viola-

tion. CC-Disc is cheap at inference time, but requires state-space discretisation, limiting efficiency

in high-dimensional spaces. CC-NN uses nearest-neighbour search at test-time, requiring more

inference compute, but scaling to higher dimensional spaces.

4.1 Problem Setup and Notation

We consider a nominal MDP M “ pS,A, r, P, γq with dataset D “ tpsi, ai, ri, s
1
iquNi“1. We train

a baseline DQN Qθ on a training split DT, and reserve DC for conformal calibration. We then

evaluate the calibrated and uncalibrated DQN on a test MDP M1 “ pS,A, r, P 1, γq.

4.2 Assumptions of Conformal Prediction

The key assumption underpinning conformal prediction is exchangeability ; permutations of train-

ing data are equally likely under some joint probability. A significant challenge in applying con-

formal prediction to RL is exchangeability violation, under which the typical coverage guarantees

of conformal prediction no longer hold. We identify two causes of exchangeability violation: time-

ordered trajectories and a non-stationary joint distribution during policy learning.

Time-ordering of trajectories. Transitions observed by an agent violate exchangeability since

they are ordered by time step. Permutations of a sequence of trajectories experienced by an agent

are not, in general, possible under a single consistent MDP. We propose three possible approaches

which mitigate this issue:

1. Rather than calibrating over individual transitions, considering full episode trajectories re-

covers exchangeability. This approach recovers exchangeability because the starting state

20

distribution is fixed, so any ordering of trajectories is equally likely under the joint MDP

and policy. This enables conformal prediction at the trajectory-level, which can inform ac-

tion selection in the starting state. However, trajectory-level prediction cannot be naively

leveraged online during an episode without extensions [38].

2. State-action conditioning under a fixed MDP restores exchangeability, and can be consid-

ered a special case of a conformal prediction with a Venn taxonomy (see Ch. 4.6 of Vovk,

Gammerman, and Shafer [75]). Since transitions ps, aq Ñ s1 are mediated by a consistent

transition kernel P p¨ | s, aq, any set of transitions from a given state-action pair are i.i.d. and

hence exchangeable, regardless of the policy or time-ordering. To our knowledge, state-action

conditioning has not previously been applied to conformal prediction in RL. However, state-

action conditioning scales poorly, so requires relaxed assumptions about exchangeability to

be applied in high-dimensional or continuous state spaces. We discuss these relaxations in

§ 4.3.

3. Sampling from a fixed replay buffer during experience replay decorrelates transitions in a

batch, breaking time-ordering. We do not explore replay buffer-sampling in this work, but

possible methods could utilise conformal prediction when sampling from a replay buffer

combined with conformal distribution sampling [76], similar to robustness approaches like

EWoK [77].

Online learning. During learning, the policy of an agent changes, altering the joint distribution

which generates transitions. Consider a low value state; the agent visits the state during early

exploration, but stops visiting it as learning proceeds. Replay buffers or trajectories including

this transition therefore violate exchangeability with new test points at inference, as they are not

consistent with a fixed MDP. Conformal prediction is thus most naturally applied to a fixed policy.

For these reasons, in this work we choose to apply conformal prediction in concert with state-

action conditioning to a frozen DQN.

4.3 Theoretical Framework

To induce conservatism, we wish to apply conformal prediction to lower bound the action-value

function of a learned DQN. We show that a Monte Carlo target, applied in the tabular setting, can

be used to derive a valid lower bound. Relaxing some assumptions, this theoretical underpinning

equips us with the core method of conformal calibration.

Setting. Consider a discounted MDP pS,A, r, P, γq with γ P r0, 1q and rewards almost surely

bounded as rt P rrmin, rmaxs. For a fixed stochastic target policy π, define the discounted Monte

Carlo return from a start pair ps, aq:

Gps,aq
π “

8
ÿ

t“0

γtrt, so that Vmin :“
rmin

1 ´ γ
ď Gps,aq

π a.s.

Let qπps, aq :“ ErG
ps,aq
π s and q‹ps, aq “ supπ q

πps, aq.

21

We introduce a Venn taxonomy by groups corresponding to state-action pairs ps, aq P S ˆ A.

For each group g “ ps, aq we assume access to nps,aq i.i.d. calibration episodes Y
ps,aq

1 , . . . , Y
ps,aq
nps,aq

distributed as G
ps,aq
π (episodes start from ps, aq and follow π). Let Qps, aq P R be any base

predictor. Define one-sided residuals ϵ
ps,aq

i :“ Qps, aq ´ Y
ps,aq

i , and let

δps,aq be the kps,aq-th order statistic, in ascending order, of tϵ
ps,aq

i u
nps,aq

i“1 , kps,aq :“
Q

pnps,aq`1qp1´αq

U

.

Set the groupwise (one-sided) conformal lower predictor

Lps,aq :“ Qps, aq ´ δps,aq.

Lemma 1 (One-off conformal coverage). For every group g “ ps, aq, the split-conformal construc-

tion above satisfies

Pr
“

Gps,aq
π ě Lps,aq

‰

ě 1 ´ α,

where the probability is over a fresh test episode from the same MDP as the calibration episodes.

Proof. By exchangeability within group g, the rank of the fresh residual ϵ
ps,aq

test :“ Qps, aq ´ G
ps,aq
π

among the set tϵ
ps,aq

1 , . . . , ϵ
ps,aq
nps,aq

, ϵ
ps,aq

test u is uniformly distributed on t1, . . . , nps,aq ` 1u. Hence

Pr
“

ϵ
ps,aq

test ď δps,aq
‰

ě
kps,aq

nps,aq ` 1
ě 1 ´ α.

The event ϵ
ps,aq

test ď δps,aq is equivalent to G
ps,aq
π ě Qps, aq ´ δps,aq “ Lps,aq, yielding the claim.

By consequence of Lemma 1, we have shown that we can condition conformal inference on

state-action pairs and derive a probabilistic lower bound on a learned Q-function. We now show

that the probabilistic lower bound from conformal inference can be converted into a true lower

bound using the Law of Total Expectation.

Theorem 1 (Conformal calibration lower bound on qπ). Under the assumptions above, for every

tuple ps, aq,

qπps, aq ě p1 ´ αqLps,aq ` αVmin.

Proof. Fix g “ ps, aq and abbreviate L “ Lps,aq, G “ G
ps,aq
π . Since G ě Vmin a.s.,

ErGs “ E
“

G ¨ IrG ě Ls
‰

` E
“

G ¨ IrG ă Ls
‰

ě L ¨ PrrG ě Ls ` Vmin ¨ PrrG ă Ls.

Where I is the indicator function. By Lemma 1, PrrG ě Ls ě 1 ´ α, hence

ErGs ě p1 ´ αqL ` αVmin.

But ErGs “ qπps, aq by definition.

Corollary 1 (Lower bound on q‹). For every ps, aq and any chosen target policy π,

q‹ps, aq ě qπps, aq ě p1 ´ αqLps,aq ` αVmin.

Proof. The first inequality is by optimality of q‹. The second is Theorem 1.

22

Remark 1 (Choice of π). To obtain a bound informative for q‹, choose a strong policy (e.g.

π “ GreedypQq); Corollary 1 then transfers the bound to q‹.

Remark 2 (Induced policy πLB). Vmin and the scalar factor p1´αq are constant across all state-

action pairs. Therefore the greedy policy πLB with respect to the derived lower bound is invariant

to their values. Setting Vmin “ 0 and p1´αq “ 1 gives the estimator Qps, aq´δps,aq, which induces

the same policy as the valid lower bound derived above.

Remark 3 (Tightness and the role of α). The miscoverage level α introduces a fundamental

trade-off between the statistical confidence of the bound and its numerical value (tightness). The

parameter α influences the final bound p1 ´ αqLps,aq ` αVmin in two competing ways:

1. Quantile Selection: Lps,aq is determined by the kps,aq “ rpnps,aq ` 1qp1 ´ αqs-th order

statistic of the residuals. As α Ñ 0, kps,aq approaches nps,aq ` 1, causing δps,aq to approach

the maximum observed residual. This makes Lps,aq more conservative (smaller), tending

towards the minimum observed return, mini Y
ps,aq

i . Conversely, a larger α leads to a less

conservative (larger) Lps,aq.

2. Convex Combination: The final bound is a convex combination of the empirical bound

Lps,aq and the worst-case bound Vmin. As α Ñ 0, more weight is placed on Lps,aq. As α Ñ 1,

the bound degenerates towards Vmin, becoming maximally loose.

Consequently, choosing a very small α provides a high-confidence guarantee (e.g., 99.9%), but the

resulting lower bound may be overly pessimistic because Lps,aq will be very low. The optimal choice

of α must balance the desire for a high-probability statement with the need for a numerically useful

lower bound on the action-value.

In practice, we will relax the above assumptions in two ways. Theorem 1 uses a Monte Carlo

return, which in practice often suffers from high variance. Instead, we will employ a bootstrapped

TD error, for a simpler implementation and lower variance nonconformity scores. We empirically

evaluate the two approaches in § 5.3.3. Additionally, Theorem 1 assumes perfect conditioning on

(s,a), which is achievable in the tabular case. However, DQNs are designed to be applied to more

complex, continuous spaces. We propose multiple schemes for aggregating nearby states; This

aggregation violates exchangeability, introducing a gap between the expected and true coverage,

but this gap can be reduced by aggregating sufficiently “similar” states (see § 4.5.2).

4.4 State Space Aggregation

One relaxation we make to achieve state-action conditioning is aggregating nearby states. However,

this is challenging; the structure of state-action pair visitation is complex, and it varies between

policies learned from different random initialisations, shown in Figure 4.1. For low-dimensional

state spaces, we evaluate three schemes which enable the discretisation of the state-space into

distinct bins, essentially recovering the tabular setting. However, these approaches do not scale

to higher-dimensional spaces; instead there we leverage nearest-neighbour search to find nearby

points.

23

2.5

0.0

2.5

Ca
rt

Ve
lo

cit
y

Seed: 0 Seed: 1

4 2 0 2 4
Cart Position

2.5

0.0

2.5

Ca
rt

Ve
lo

cit
y

Seed: 2

4 2 0 2 4
Cart Position

Seed: 3

-0.58

0.43

ε

Figure 4.1: States visited across 10,000 transitions in Cart Pole. Subplots show
policies trained from different random seeds—state-action visitation varies heav-
ily. Colouring indicates the TD nonconformity score ϵ. The structure is complex,
and small movements in the state space can induce large changes in score. Hor-
izontal striations are due to the discrete time steps of the environment.

4.5 Conformal Calibration Framework

4.5.1 One-Sided Split Conformal Inference

In conformal prediction it is typical to use an absolute distance metric (eg. |ŷi ´ yi|), which

symmetrically grows the interval in response to underestimation and overestimation. However,

for the purpose of lower bounding a function we only need to penalise overestimation, so employ

the signed score ϵi to obtain a tighter bound (an empirical comparison is made in § 5.3.2). For

transition psi, ai, ri, s
1
iq, we define

ŷi “ Qθpsi, aiq, yi “ ri ` γmax
a1

Qθps1
i, a

1q, ϵi “ ŷi ´ yi.

For bin ps, aq, compute the lower-tail conformal offset

δps,aq “ Quantiletα
`

tϵi : psi, aiq P binps, aqu
˘

, tα “
rpm ` 1qp1 ´ αqs

m
,

where Quantiletα is the tα quantile of the residuals. This corresponds to the one-sided predic-

tion interval

Cps, aq “
“

Qθps, aq ´ δps,aq, 8
˘

.

4.5.2 Coverage Gap in Continuous Spaces

In continuous state spaces, we aggregate nearby states into bins. In general this violates ex-

changeability, so the hard guarantees of conformal prediction no longer hold. However, as shown

by Barber et al. [7], the “coverage gap” due to exchangeability violation can be bounded

Coverage gap “ p1 ´ αq ´ Pr
”

yn`1 P Cps,aqpxn`1q

ı

,

24

Coverage gap ď

řn
i“1 wi dTV

`

Z,Zi
˘

1 `
řn

i“1 wi
.

Where

• dTVp¨, ¨q is the total variation distance between distributions, the largest possible difference

between the probabilities that the two distributions assign to the same event.

• Z “ pz1, . . . , zn`1q is the full calibration dataset sequence with zi “ pxi, yiq.

• Zi “ pz1, . . . , zi´1, zn`1, zi`1, . . . , zn, ziq swaps the test point pxn`1, yn`1q with the i-th

training point pxi, yiq.

• wi P r0, 1s are pre-specified weights on data points. Barber uses decaying wi for distribution

shift, but other work uses spatial weights (eg. 1 for nearest neighbours and 0 otherwise)[44].

Intuitively this results means that if states in a bin are similar, the coverage gap will be small.

We empirically evaluate coverage in the results section (see section § 5.2.6).

4.5.3 Uncalibrated regions

When a given region of the state space contains few or no calibration examples, δps,aq is inaccurate

or undefined. Instead, we choose a global fallback value. Recall that one benefit of Conservative

Q-Learning is gap-expansion; increasing the difference between the action-values of in- and out-

of-distribution actions. To induce gap-expansion we set the correction to the largest of all bins

with sufficient calibration data δfallback “ maxps,aq δ
ps,aq. An illustration of the fallback behaviour

is given in Figure 4.2.

Similarly, when using nearest neighbour search to collect a calibration set in CC-NN, we would

like to identify outlier states which are too far from the calibration data for an accurate offset. In

this case, we choose a maximum distance for the kth neighbour, beyond which we revert to the

fallback measure δfallback “ maxps,aq δ
ps,aq. Setting a maximum distance in a multi-dimensional

state-space across different coordinate systems (eg. angle, velocity, position) is challenging, so

instead of pre-specifying a distance we identify a coverage level d̂ P r0, 1q. Denoting the distance

from a state-action pair psi, aiq to its kth neighbour as diÑk, the max distance is then

dmax “ Quantiled̂
`

tdiÑku
˘

, psi, aiq P Dc.

4.6 CC-Disc: Discretised Conformal Calibration

We now begin describing specific instantiations of the conformal calibration framework. First we

outline CC-Disc, which uses state-space discretisation, calculated at calibration-time, to com-

pute offsets for each state-action bin. These are then retrieved at inference, giving a relatively

lightweight calibration approach.

25

4.6.1 Partitioning the State-Action Space

To achieve state-action conditioning in continuous spaces we discretise the space. In principle, this

means using the calibration data to learn a discretisation function Discretiseps, aq : S ˆ A ÞÑ

rKs, where rKs “ t1, 2, . . . ,Ku is the index set of bins. We test three methods; uniform binning,

tile coding and a data-driven binary partition, as described in § 2.3.

4.6.2 Algorithm (CC-Disc)

We present a high-level overview of the steps taken in CC-Disc. Full pseudocode is provided in

Appendix A.

1. Train nominal agent. Learn Qθ on M using standard DQN.

2. Collect calibration data. Execute the greedy policy πQ in M and store transitions

ps, a, r, s1, a1q in a calibration buffer of size Nc. We save examples in deques with a maximum

length greater than the minimum required calibration threshold, so that commonly-visited

states have larger calibration sets.

3. Discretise state-action space. Construct a Discretise function using DC . For example,

if binning, find the desired quantiles of the data to cover and evenly construct bins spanning

the interval.

4. Compute lower bounds. Compute residuals ϵi and corresponding offsets δps,aq at level α.

If a bin has too few calibration examples, instead use the fallback value maxs,a δ
ps,aq.

5. Deploy with lower bounded policy. At test-time, in shifted environment M1, act greed-

ily with respect to the conformal lower bound

a “ argmax
aPA

“

Qθps, aq ´ δps,aq
‰

.

4.7 CC-NN: Nearest-Neighbour Conformal Calibration

Although state-space discretisation is an intuitive, lightweight approach to state-action condition-

ing, the number of required grid cells scales exponentially with dimensionality of the state-space,

leading to a high, inefficient memory cost. As an alternative, we propose a nearest-neighbour

variant, CC-NN. Where CC-Disc computes a discretisation function and offsets during offline

calibration step with a cheap lookup at inference, CC-NN constructs the calibration set and com-

putes δps,aq at inference-time, using nearest-neighbour search. This increases the inference cost of

calibration, but avoids the exponentially growing memory overhead of CC-Disc (see § 5.2.4 for

an evaluation of the incurred cost).

4.7.1 Offline Observation

In CC-NN, we still observe the agent in the nominal environment to build a buffer of previous

transitions. We then compute nonconformity scores for each point in the buffer. Lastly we compute

a maximum distance as described in § 4.5.3. Beyond this distance, we revert to the fallback value

δfallback.

26

4.7.2 kNN Quantile at Test Time

At inference time, given state-action pair ps, aq, retrieve the k-nearest neighbours and compute

the offset,

Nk “ kNN
`

zps, aq; tzpsi, aiquDcal

˘

,

δps,aq “ Quantiletα
␣

ϵi : i P Nk

(

, tα “
rpk ` 1qp1 ´ αqs

k
.

As described in § 2.3.1, there are numerous approaches to fast nearest-neighbour search, ranging

from exact methods like a k-d tree to approximate methods like HNSW. For the scale of problem

CC-NN is applied to, with a 10-dimensional state space and 10,000 transitions in the calibration

set, we found a k-d tree was sufficiently performant.

4.7.3 Algorithm (CC-NN)

We present a high-level overview of the steps taken in CC-NN. Note that the first two steps are

identical to CC-Disc. Full pseudocode is provided in Appendix A.

1. Train nominal agent. Learn Qθ on M using standard DQN.

2. Collect calibration data. Execute the greedy policy πQ in M and store transitions

ps, a, r, s1, a1q in a calibration buffer of size Nc.

3. Compute residuals. Compute residuals ϵi and corresponding offsets δps,aq at level α for

each transition in buffer. Compute the maximum distance as the 90th quantile distance of

the kth neighbour.

4. Compute correction at test-time. Given a state-action pair, find the k-nearest neigh-

bours, and compute offset δps,aq at level α. If the kth neighbour is further than the maximum

distance, use the fallback δfallback. Act greedily with respect to the conformal lower bound

a “ argmax
aPA

“

Qθps, aq ´ δps,aq
‰

.

4.8 Summary

In this chapter we motivated and introduced conformal calibration, alongside two variant algo-

rithms CC-Disc and CC-NN. CC-Disc relies on an explicit state-space discretisation function

which is constructed after the observation phase. At inference, it only requires a cheap lookup to

fetch precomputed corrections. CC-NN, on the other hand, has no explicit discretisation scheme.

It constructs a calibration set per-decision at inference-time using nearest-neighbour search. An

illustration of the two methods is shown in Figure 4.2.

27

Cart Position

Ca
rt

Ve
lo

cit
y

CC-Disc (Uniform)

Cart Position

CC-NN (k=50)

0.21 0.21
score

Figure 4.2: A 2D view of the scores of CC-Disc and CC-NN in state-space.
The left plot shows state-action visits by a Cart Pole agent, coloured by the
nonconformity score. The CC-Disc grid boundaries are selected to cover 90%
of the observed transitions. Far from the distribution, the offset is the constant
value δfallback, inducing gap-expansion.

28

Chapter 5

Results

In this section we describe the experimental setup of our empirical evaluations of CC-Disc and

CC-NN, and provide empirical results from conformal calibration. We split the results section

into two halves; one evaluates the performance impacts of calibration and compares to baselines,

and the other evaluates design choices and the effect of hyperparameters.

5.1 Experimental Setup

Environments. All environments use Gymnasium (an up-to-date fork of OpenAI Gym) running

locally on a Macbook M3 [13, 73]. We use Stable Baselines3 (SB3) for its vanilla DQN imple-

mentation, using a PyTorch backend. SB3-Zoo hyperparameters are used for all environments

(see Appendix B) [57, 56, 52]. We test on the 3 classic control environments with discrete action

spaces (as required by a DQN): Car tPole, Mountain Car and Acrobot. Additionally, for a slightly

larger state space we also test Lunar Lander. For all environments we use default settings. Qual-

itative testing suggested that the behaviour of conformal calibration was fairly consistent across

parameters in the same environment, so for simplicity we focus on one shift parameter to vary:

pole length in Cart Pole, gravity in Mountain Car, link length in Acrobot and gravity in Lunar

Lander.

Baselines. There are no standard baselines for comparing different robust RL baselines [49],

conformal calibration is a novel post-training approach, precluding direct comparison with prior

work. Instead, therefore, we compare to similar methods for addressing overestimation in DQNs;

DDQN and a Conservative Q-Learning DQN (CQL-DQN). We also evaluate the effect of combining

conformal calibration with DDQN and CQL-DQN agents. Implementations of Conservative Q-

Learning and DDQN are written in PyTorch and scaffolded around SB3’s DQN implementation

(code is available at https://github.com/foty-hub/msc_thesis). Each baseline was tuned on

the nominal environment to surpass a standard reward threshold, but no other robustness-aware

tuning was done. Reward thresholds are listed in Appendix B.3.

Discretisation. PyFixedReps is used for uniform binning and tile coding implementations [53].

Scikit-learn is used for its implementation of a k-d tree nearest neighbour algorithm [54] for fast

29

https://github.com/foty-hub/msc_thesis

nearest-neighbour search in CC-NN.

Evaluation Protocol. For each environment and algorithm, we train from scratch on a fixed

number of episodes, for 25 random seeds. To ensure that training dynamics don’t bias results, we

discard any agents which fail to meet a sufficient reward threshold on the training environment

(thresholds are listed in Appendix B). To test robustness to distribution shift we evaluate agent

mean reward over 250 episodes over a range of parameter values (eg. pole length in Cart Pole).

For final plots we report the interquartile mean, with 95% bootstrapped confidence intervals as

recommended by Agarwal et al. [2]. We use the same hyperparameters for conformal calibration

across environments (also listed in Appendix B), with the aim of demonstrating performance

without access to shifted environments against which to tune.

Score functions. We evaluate two score functions; the signed and unsigned scores ϵsignedpŷ, yq “

ŷ ´ y and ϵunsigned “ |ŷ ´ y| respectively. Intuitively, the unsigned score penalises both over- and

under-estimation, while the signed score only corrects for overestimation. By default we used the

signed score. We therefore expect the signed score to give a tighter lower bound and yield better

performance. Conformal prediction only leverages order statistics, so squared distances would

yield the same prediction sets as the L1 norm. Results are given in § 5.3.2.

Metrics. Evaluating the robustness of a policy is nuanced, and the Robust RL literature lacks

a single consistent metric [49]. Common choices include a worst-case return over an uncer-

tainty set of transition kernels Rwc “ infP 1PP JP 1 pπq, a worst-case performance ratio Ratwc “

infP 1PPpJP 1 pπq{JP 1 pπ˚
P 1 qq and conditional value at risk (CVaR), which measures the average re-

ward across episodes with a cumulative reward in the lowest quantiles of the distribution (eg.

average reward across the worst 5% of episodes). We argue that, since conformal calibration in-

cludes no explicit assumptions about an uncertainty set of transition kernels, these metrics are

arbitrary in our setting; we have no strong prior over possible scales of distribution shift, and the

range of the uncertainty set can be expanded or narrowed ad hoc to achieve essentially any desired

value. The worst-case performance ratio is also challenging to compute and reproduce; it requires

training optimal policies for every value of distribution shift evaluated, but it is not simple a priori

to evaluate whether a policy is optimal for a given value of shift.

Instead, we follow other work, such as Wang et al. [77], primarily presenting curves over a

range of shifts to give a nuanced view of the robustness of calibrated policies. We present a range

of values which sufficiently demonstrates the decay from a performant to suboptimal policy. As

a summary metric, we report a mean over this range of values, representing an uninformative

uniform prior.

The primary metric we consider is the per-seed ratio of the calibrated to uncalibrated mean

reward over 250 evaluation episodes. In our setting, this is a natural choice which enables the

calculation of meaningful confidence intervals; the robustness of a calibrated policy is dependent

on the robustness of the original learned policy (see Figure 5.1). For this reason, the variance of

calibrated performance is not a meaningful indicator of the average improvement due to calibration:

suppose the calibrated policy were consistently 10% more robust, but the uncalibrated policy

exhibited 20% variance across random seeds. Since the calibrated policy “inherits” the variance of

30

uncalibrated policies across seeds, a plot with confidence intervals calculated across seeds would

obscure consistent improvement. This motivates a novel metric which averages the improvement

due to calibration on a per-seed basis. The expression for the improvement, at a single value of

the shift parameter, is given by

x “
µ

piq
c ´ rmin

µ
piq
u ´ rmin

.

Here µ
piq
c , µ

piq
u are the mean reward over evaluation episodes of the calibrated and uncalibrated

agents respectively. rmin is the minimum possible reward for an episode; the subtraction gives a

meaningful ratio on environments with negative rewards (to see why, consider that -50 is a better

outcome than -100, but the ratio ´50
´100 “ 0.5, which would imply a performance degradation). We

then compute the IQM and 95% CI over seeds using 50,000 bootstrap samples. When reporting

a single figure to illustrate improvement due to calibration, we report this metric averaged across

a range of shift values.

5.2 Results: Performance Evaluation

We first report results illustrating the efficacy of conformal calibration. We explore the behaviour

of calibration on the fairly simple Cart Pole environment. Next, we extend the analysis to consider

other environments, showing improvements on the Mountain Car and Lunar Lander environments,

but no improvement on Acrobot. Lastly, we assess the computational overhead of each method.

5.2.1 Cart Pole

We first evaluate conformal calibration on the Cart Pole environment. Both algorithms increase

the average reward over the expected reward, with CC-Disc performing significantly better.

Results over multiple seeds in Figure 5.1 show that the calibrated policy is heavily dependent

on the uncalibrated policy. Additionally, the robustness of the underlying uncalibrated DQN

policy varies significantly with random seed. In some sense this is unsurprising; it is common for

the performance of Deep RL algorithms to vary strongly with random seed [2, 26, 25]. Although

conformal calibration is deterministic, the dependence on the underlying policy and environmental

stochasticity during the observation step means it inherits significant variance.

An interesting behaviour can be observed on seed 4 in Figure 5.1. The uncalibrated policy is

suboptimal on the nominal environment, but calibration “corrects” the policy. Both calibration

methods boost performance, with CC-NN achieving optimal reward on the nominal environment.

Due to the focus on distribution shift we do not focus on this behaviour further in this work,

but believe it warrants further investigation. Seed 4 also shows that the calibrated policy can

sometimes reduce robustness on specific parameter values.

Calculating the performance ratio and averaging across seeds shows that the robustness gains

of CC-Disc increase with greater distribution shift, shown in Figure 5.2. Averaging across shift

values, CC-Disc achieves a 69.6 (29.5–250.1)% increase in reward, where the first number is the

interquartile mean and the range in brackets indicates an asymmetric bootstrapped 95% confidence

interval. CC-NN achieves a 7.4 (-1.3–37.2)% improvement.

31

0

100

200

300

400

500
Seed: 1 Seed: 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
length

0

100

200

300

400

500
Seed: 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
length

Seed: 15

Uncalibrated CC-DISC CC-NN

Figure 5.1: Plots of mean reward across DQN agents trained from different
random seeds. The vertical dotted line indicates the length of the pole in the
nominal environment. The variation in robustness is high, and calibrated poli-
cies depend strongly on underlying uncalibrated policies. In some cases, such
as the top-right subplot, calibration corrects a suboptimal policy, even on the
nominal environment.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Pole Length

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Im
pr

ov
em

en
t R

at
io

 (I
QM

)

CC-Disc CC-NN

Figure 5.2: On average, the CC-Disc agent achieves a 70% higher reward
across a range of pole lengths on Cart Pole. CC-NN achieves a 7% average
improvement.

32

5.2.2 Comparison to Baselines

Comparing baselines, the most notable finding is that the CQL-DQN significantly boosts robust-

ness compared to any other methods. In some respects this is unsurprising—CQL-DQN leverages

significant additional computation at train-time, and explicitly introduces conservatism as a train-

ing objective. In addition, CQL-DQN required twice as many training steps to reliably achieve

optimal performance on the nominal environment, so we might expect that the agent encountered

more state-action pairs and learned an accurate Q-function across a broader range of states than

the unmodified DQN. We also find that the DDQN does not improve robustness in the face of

domain shift, and in fact is less robust than the vanilla DQN.

Comparing uncalibrated to calibrated policies, however, we find that calibration, at least

marginally, improves robustness of all three methods, even improving the CQL-DQN on extreme

values of the pole length.

0 1 2 3
length

0

100

200

300

400

500
DQN

0 1 2 3
length

DDQN

0 1 2 3 4 5
length

CQL-DQN

Uncalibrated CC-DISC CC-NN

Figure 5.3: Median reward across 25 seeds for each baseline, with and without
conformal calibration. CQL-DQN is significantly more robust than DQN and
DDQN, and hence is evaluated over a wider range of pole lengths.

5.2.3 Classic Control and Lunar Lander

To assess whether the findings on Cart Pole are consistent across environments, we evaluate

calibrated agents on the Acrobot and Mountain Car environments. On Mountain Car CC-Disc

improves mean reward by 22.6 (2.9–52.7)%, and CC-NN 7.5 (0.7–24.2)%. On Mountain Car the

goal is to pilot drive a vehicle out of a valley, up a hill to a goal. Therefore it is encouraging that

calibration mostly improves the policy for higher levels of gravity, for which the environment is

more difficult to solve.

In the Acrobot environment, calibration confers no benefits. CC-Disc achieves 0.5 (-0.6–1.7)%

improvement. CC-NN slightly reduces robustness, with a change of -5.7 (-9.3—2.4)%. We explore

this further in § 5.2.5.

Evaluating CC-Disc for a single seed on the Lunar Lander environment, we observe the

consequences of the “curse of dimensionality,” as shown in Figure 5.5. With an overly coarse

grid the discrete algorithm over-generalises. Robustness improves as the grid becomes more fine.

However, this leads to large grids containing millions of features, most of which are never visited

33

Mountain Car

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050
Link Length

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Ra
tio

 (I
QM

)

CC-Disc CC-NN

Acrobot

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Link Length

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Ra
tio

 (I
QM

)

CC-Disc CC-NN

Figure 5.4: Improvement ratios for Mountain Car (left) and Acrobot (right).
While the Mountain Car environment benefits as gravity increases, Acrobot
sees no benefit over a range of link lengths, with CC-NN slightly reducing
robustness.

during calibration, leading to a large, inefficient memory overhead.

This motivates the use of CC-NN, which leverages a nearest-neighbours search instead of an

explicit state-space discretisation. This method achieves an average improvement of 11 (-13–75)%

over the DQN baseline, shown in Figure 5.6.

12.5 10.0 7.5 5.0 2.5 0.0
gravity

0

100

200

M
ea

n
Re

tu
rn

4 bins per dimension
262k features

12.5 10.0 7.5 5.0 2.5 0.0
gravity

6 bins per dimension
6.72m features

12.5 10.0 7.5 5.0 2.5 0.0
gravity

8 bins per dimension
67.1m features

Uncalibrated CC-DISC

Figure 5.5: Comparing a fixed seed, increasingly fine grids improve the perfor-
mance of CC-Disc on the Lunar Lander environment. However, since Lunar
Lander has an 8-dimensional state space, the required number of grid spaces,
and hence memory overhead, explodes to unreasonably large counts.

5.2.4 Computational Overhead

As inference-time modifications to action selection, both CC-Disc and CC-NN incur overhead

during action selection. To evaluate this, we run each method for 50 episodes and profile the

time spent in action selection, with results shown in Figure 5.7. On average, an unmodified

DQN—which has 67,331-69,124 active parameters at inference depending on the input state-space

dimension—took 33.8 µs to perform action selection. By comparison, CC-Disc with 6 bins per

dim takes 41.4 µs, a 22% increase. This overhead is due to the additional steps of state-action

discretisation and indexing into the precomputed offset array. Note that, as discussed in § 5.2.3,

the bin count grows exponentially with the state-space dimension, so the memory overhead of

CC-Disc grows even though the compute overhead is stable.

34

12 10 8 6 4 2 0
Gravity

0.5

1.0

1.5

2.0

2.5

3.0

Ra
tio

 (I
QM

)

Figure 5.6: CC-NN improvement ratio on Lunar Lander, evaluated over 25
seeds, with 95% confidence intervals per-value. Across all parameter values, the
average improvement is 10.8%.

CC-NN, by comparison, incurs significant overhead, taking between 150% to 380% longer for

action selection. This is because it constructs a calibration set at inference-time by querying a k-d

tree, which regresses to a brute-force search as the dimensionality of the state space increases [5].

Mountain Car
2D

Cart Pole
4D

Acrobot
6D

Lunar Lander
8D

0

25

50

75

100

125

150

175

200

Ti
m

e
pe

r s
te

p
(µ

s)

DQN CC-Disc CC-NN

Figure 5.7: Inference compute cost of action selection, comparing a vanilla DQN
to calibrated versions using CC-Disc and CC-NN. Tick labels indicate the
dimensionality of the state space for each environment. CC-Disc adds a 22%
overhead. CC-NN increases inference cost significantly, scaling with state-space
dimensionality.

5.2.5 Limited effect on the Acrobot environment

Evaluating all the baselines and calibration algorithms on the Acrobot environment shows that

none achieve improved robustness in the face of distribution shift (see Figure 5.8). This suggests

that the lack of improved robustness is consistent—no amount of in-distribution conservatism and

out-of-distribution scepticism increases robustness. One possible explanation is that the Acrobot

environment is based on a double-pendulum, a chaotic physical system; small changes to the

35

0.5 1.0 1.5 2.0
LINK_LENGTH_1

140

120

100

80

60
DQN

0.5 1.0 1.5 2.0
LINK_LENGTH_1

DDQN

0.5 1.0 1.5 2.0
LINK_LENGTH_1

CQL-DQN

Uncalibrated CC-DISC CC-NN

Figure 5.8: On the Acrobot environment, none of the calibration methods or
baselines induce significantly more robust policies.

dynamics induce large changes to the trajectories observed. In this case, small distribution shifts

move the policy far from the training support, where a constant offset δfallback across actions fails

to modify action-selection. Due to time constraints we were unable to validate this hypothesis, but

believe it warrants further research; understanding why calibration fails on Acrobot could yield a

deeper understanding of how it induces robustness.

5.2.6 Coverage

To adapt state-action conditioning to continuous state spaces we relaxed the exchangeability as-

sumption, aggregating nearby states (see § 4.3). In theory this exchangeability violation nullifies

the coverage guarantees of conformal prediction. To assess the empirical impact of this relaxation,

we measure the coverage gap of a calibrated agent on Cart Pole by the following procedure; we

apply conformal calibration, then observe an agent on the nominal environment and track how of-

ten the observed TD target rt ` γmaxa1 Qθpst`1, a
1q is above the calibrated value function (which

should be a lower bound with probability 1 ´ α). We run the observation stage of conformal

calibration for ten million transitions to ensure that almost all grid cells visited have sufficient cal-

ibration data. In Figure 5.9 we show an occupancy-weighted histogram where one count represents

a single visit to a state-action pair, run over 15 random seeds with α “ 0.1.

On average, coverage holds roughly, with an average of 89.7% empirical coverage. Most grid

spaces cluster around the specified coverage rate, although we see heavier tails than the expected

Beta distribution (discussed in § 2.2.3). A small number of grid spaces are severely undercovered,

which may be due to grid spaces spanning the score-heterogeneous regions which can be seen in

Figure 4.2. It is worth noting that in typical conformal calibration, with the 10,000 calibration

transitions used as standard in this thesis, the empirical coverage rate is higher than specified,

since more grid spaces are covered by the fallback value.

5.3 Results: Design Choices and Hyperparameters

We now present a series of evaluations validating the design choices of the CC-Disc and CC-NN

algorithms. We also test the influence of various hyperparameters, illustrating considerations such

as the generalisation-vs-locality tradeoff in state-space aggregation.

36

0.5 0.6 0.7 0.8 0.9 1.0
Empirical coverage

0

20000

40000

60000

80000

100000

120000

Co
un

t

Calibrated
Fallback Region
Theoretical coverage

Figure 5.9: Occupancy-weighted histogram of coverage over a uniform grid CC-
Disc agent on Cart Pole. The small orange segment with 100% coverage indi-
cates grid spaces with insufficient calibration data which instead use the fallback
correction. CC-Disc typically uses variable length calibration sets with a min-
imum threshold, but we fix them to 250 examples for this experiment.

5.3.1 Discretisation Methods

The defining feature of CC-Disc is state-space discretisation, which enables the application of

conformal prediction to continuous state-spaces. State-space discretisation is challenging—even on

the same environment, different policies can have radically different state-space visitation patterns,

as shown in Figure 4.1. The simplest aggregation scheme is a uniform grid, but this is deeply

inefficient; In the Lunar Lander environment a uniform grid has 6.7 million features with only 6

bins per dimension. Given that we typically observe only 10,000 transitions during calibration,

almost all of these grid cells are never visited and revert to the constant fallback value.

We would like to find more efficient schemes for state-space discretisation. We explore the use

of tile-coding and a data-driven binary partition, as described in § 2.3. The results on Acrobot,

Cartpole and Mountain Car are shown in Figure 5.10. For each discretisation method, we vary

the following quantities:

• Grid: bins per state dimension

• Tile coding: bins per state dimension, and number of offset grids

• Tree/Binary Partition: maximum depth, the minimum numbers of items per leaf, and the

splitting criterion (impurity-based or median).

On average, a simple uniform grid appears to be the most effective, achieving competitive

performance on Mountain Car, the highest performance on Cart Pole, and no negative effect

on Acrobot. The tree (binary partition) method is the least effective approach, likely due to a

propensity to overfit to data, even with a small number of leaves. The tree harms robustness on

Acrobot and Mountaincar, with only moderate improvements on Cart Pole, and higher sensitivity

to hyperparameter choice than other methods. Tile coding achieves more reliable performance

than the tree, but does not substantially improve on the uniform grid.

One reason that coarse grids may outperform fine grids is that broad grid spaces generalise

to unseen state-action pairs, where high resolution approaches revert to the fallback value in the

37

acro cart mcar
0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

ea
n

im
pr

ov
em

en
t r

at
io

 (I
QM

)
Grid[4]
Grid[6]
Tile[4x2]
Tile[4x4]

Tile[6x2]
Tile[6x4]
Tile[8x2]
Tree[d=4,l=1,med]

Tree[d=6,l=1,med]
Tree[d=6,l=5,imp]
Tree[d=8,l=1,med]
Tree[d=8,l=10,imp]

Grid[4]
Grid[6]
Tile[4x2]
Tile[4x4]

Tile[6x2]
Tile[6x4]
Tile[8x2]
Tree[d=4,l=1,med]

Tree[d=6,l=1,med]
Tree[d=6,l=5,imp]
Tree[d=8,l=1,med]
Tree[d=8,l=10,imp]

Figure 5.10: Comparison of discretisation methods. Colours indicate the type
of discretisation (grid, tile coding, tree), and darker hues indicate more finely-
discretised grid spaces.

face of distribution shift. This appears to be a feature of the environment and learned Q-function;

the more homogeneous residuals are in state-space, the more a coarse grid will enable useful

generalisation.

One interesting note from this experiment is that, on Cart Pole, a four-bin grid is the most

performant solution, achieving a 101 (27–224)% performance improvement over the uncalibrated

DQN baseline. This is higher than the 70% improvement we achieve using the default 6 bins per

dimension. Per-environment tuning of conformal calibration is a promising way to further boost

robustness per-environment, although we prioritise default settings to demonstrate the applicabil-

ity of conformal calibration without significant tuning.

5.3.2 Score function comparison

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Pole Length

0.5

1.0

1.5

2.0

2.5

3.0

Im
pr

ov
em

en
t R

at
io

 (I
QM

)

y ytrue |y ytrue|

Figure 5.11: Comparing score functions on Cart
Pole, the signed score is better on average, but
confidence intervals overlap significantly.

As discussed in § 4.5.1, we use a signed distance

score to lower bound the Q-function without

widening prediction sets where the Q-function

is an underestimate. To validate this decision,

we compare signed and unsigned scores using

CC-Disc on Cart Pole. On average the signed

score exhibits a higher improvement, although

there is significant overlap in confidence inter-

vals, as shown in Figure 5.11. Given the theo-

retical motivation, we believe the signed score

is preferable, but further experiments to certify

this with high statistical significance would be

valuable.

38

5.3.3 Monte Carlo vs TD Return

As discussed in § 4.3, we relax the assumptions of Theorem 1 and use a TD return in the calculation

of the nonconformity score ϵ. This simplifies the implementation, but the approximation error due

to bootstrapping means we can no longer guarantee that the calibrated policy πLB is induced with

respect to a valid lower bound. A comparison of the interquartile mean improvement shows the use

of a TD return has no negative impact on performance, shown in Figure 5.12. On the Mountain

Car, Acrobot and Cart Pole environments, both targets yield similar results. On Lunar Lander

the Monte Carlo return harms robustness—this may be because Lunar Lander is a more complex

environment with longer episodes, leading to higher variance Monte Carlo returns, and CC-NN

is more vulnerable to the variance in residuals due to the small, fixed-size calibration set.

Acrobot Mountain Car Cart Pole Lunar Lander
0.0

0.5

1.0

1.5

2.0

2.5

Im
pr

ov
em

en
t R

at
io

 (I
QM

)

MC TD

1.00
1.12

1.67

0.78
1.00

1.18

1.64

1.10

Figure 5.12: Comparison of a Monte Carlo vs TD target for the nonconformity
score, on all four environments. The TD target yields consistent gains across
environments, where Monte Carlo falters on Lunar Lander. Evaluated using
CC-Disc for the Acrobot, Mountain Car and Cart Pole environments, and
CC-NN for Lunar Lander.

5.3.4 Effect of α

One of the key hyperparameters in conformal prediction is α, the miscoverage rate. Higher values

α give tighter prediction intervals. In conformal calibration, however, the value of α has a limited

effect on the robustness improvements, shown in Figure 5.13. The exception is a peak at α “ 0.01.

Possible causes for this low sensitivity could be near-uniform residuals within bins or limited

calibration examples, so that different values of α select for similar values of the correction δps,aq.

Due to time constraints we were not able to explore this behaviour more deeply.

5.3.5 Test-time adaptation

One natural approach to distribution shift is to keep learning by fine-tuning the agent to the test

environment. Relatedly, we might ask whether conformal calibration can incorporate information

39

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

Im
pr

ov
em

en
t R

at
io

 (I
QM

)

0.005

0.01

0.05

0.1 0.2
0.5 0.8

0.9 0.95
0.99

Figure 5.13: Mean improvement ratio on Cart Pole for different values of the
miscoverage rate α. Except for a sharp peak at α “ 0.01, the choice of α does
not significantly alter the robustness boost of calibration.

from the test-environment to improve robustness. To investigate this, we test the update proposed

by Angelopoulos, Barber, and Bates [4] in CC-Disc, updating the pre-computed corrections in

response to test-time observations

δ
ps,aq

t`1 “ δ
ps,aq

t ` ηt

´

I
“

rt ` γmax
a1

Qθps1, a1q ď Qθps, aq ´ δ
ps,aq

t

‰

´ α
¯

.

Testing on Cart Pole and Acrobot demonstrates no clear benefit, as shown in Figure 5.14.

The variance of the test-time method appears to be significantly higher, especially for extreme

distribution shift on the Acrobot environment. The test-time method does outperform the uncal-

ibrated policy on values close to the nominal environment on Acrobot, which may warrant further

research. This is a surprising result; information from the test environment ought to be valuable

in devising a more effective policy. A possible explanation is that bootstrapping from unreliable

out-of-distribution action-value estimates could lead to spurious updates, but testing with a Monte

Carlo return showed that it harmed performance of the test-time method significantly, reducing

Cart Pole mean improvement from 70% to 42%.

Cart Pole

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Pole Length

1

2

3

4

Im
pr

ov
em

en
t R

at
io

 (I
QM

)

CC-Disc CC-Disc (test-time)

Acrobot

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Link Length 1

0.6

0.8

1.0

1.2

1.4

Im
pr

ov
em

en
t R

at
io

 (I
QM

)

CC-Disc CC-Disc (test-time)

Figure 5.14: Improvement ratios with and without test-time adaptation, with
test-time learning rate η “ 0.01.

40

5.4 Summary

In this chapter we presented empirical results on a mixture of Gymnasium environments including

classic control settings and Lunar Lander [73, 13]. We found that, using standard parameters

across all environments, CC-Disc boosts robustness on the Cart Pole and Mountain Car environ-

ments. We also found that calibration is amenable to combination with conservative approaches

like DDQN and CQL-DQN, benefitting robustness. Evaluation on Acrobot shows that no pro-

conservatism method reliably boosts robustness. An extension to the Lunar Lander environment,

with a larger state-space, demonstrates the shortcomings of the state-space discretisation approach

of CC-Disc, motivating the use of CC-NN, which achieves an 11% improvement. However, anal-

ysis of compute overhead shows while CC-Disc is fairly cheap at inference, CC-NN is expensive,

taking up to 4 times longer on larger state-spaces.

Empirical analysis of the coverage and TD return show that the relaxations we make to the

theoretical lower bound derived in Theorem 1 do not significantly affect validity. Assessment

of different discretisation approaches for CC-Disc suggests that a simple uniform grid is the

most effective choice on the low-dimensional environments tested. Lastly, an exploration of test-

time adaptation using adaptive correction scaling shows no clear benefits compared to static

pre-computed corrections.

41

Chapter 6

Conclusion

In this final chapter, we highlight limitations of the work presented and worthwhile avenues for

future work, as well as reflecting on the content presented in this thesis.

6.1 Limitations

As a novel method, conformal calibration offers myriad directions for improvement or exploration.

In this work, we priotised empirical evaluation and a small number of environments, evaluating

across many random seeds to establish that results were not due to random chance. However, as

a result there are significant limitations we were unable to address, including:

Dimensionality. Conformal calibration was only tested on fairly small environments with

fewer than ten dimensions. Real-world agents have to navigate significantly larger, more complex

environments. Although this work demonstrates the impact of calibration on small spaces, it may

require significant modifications to scale effectively to these larger spaces.

Theoretical grounding. The gains due to conformal calibration are inconsistent across

environments. We see substantial gains on Cart Pole, moderate gains on Lunar Lander and

Mountain Car, and no benefit on Acrobot. A more principled understanding of how calibration

benefits robustness could boost its reliability on more challenging environments.

Scope of compatible methods. This study focused on value-based methods with discrete

action spaces. The results do not yet extend directly to actor–critic or continuous-action settings

without additional design.

Hyperparameters and heuristics. Performance is sensitive to design choices such as the

miscoverage rate α, discretisation density or k in kNN, distance metrics, and thresholds for out-of-

distribution detection. These choices affect both robustness and nominal performance, and poor

tuning can reduce the benefits of calibration.

Computational and memory cost. CC-Disc is efficient at inference but memory overhead

scales poorly with state dimensionality, while CC-NN scales better with memory but incurs ad-

ditional lookup time and memory usage. Neither variant is yet optimised for demanding real-time

applications.

42

6.2 Future Work

Adaptive calibration. We found that test-time adaptation yielded no substantial benefit, but

this was an unintuitive result, and may be due to the specific choice of adaptation mechanism.

Therefore we feel this is an avenue deserving of significantly more research.

Scaling to richer state spaces. More expressive ways of capturing locality could extend

calibration to higher dimensions. Learned embeddings, approximate nearest neighbour search,

or discretisations based on clustering and representation learning may provide more efficient and

flexible alternatives. At present, the method has only been evaluated on relatively small and

simple environments, so assessing its effectiveness in larger, more complex domains remains an

important next step.

Diagnostics and automation. Developing tools to assess whether calibration is likely to help

in a given environment—for example, based on state coverage or sensitivity to distribution shift—

could make the method more practical. In a similar vein, calibration improves the robustness of

some policies more than others depending on random seed. A deeper theoretical understanding

could identify which aspects of an agent’s policy make it amenable to calibration.

Additional baselines. We demonstrate that calibration benefits DDQN and Conservative

Q-Learning. Further testing with other robustness approaches such as domain randomisation

could clarify whether calibration is broadly complementary to other methods, and contribute

more generally to a “recipe” for robust agents.

Application to nominal environment. As mentioned in § 5.2.1, calibration can occasionally

“correct” suboptimal policies on the nominal environment. This effect is beyond the scope of this

work, but may warrant further research.

6.3 Conclusion

This thesis introduced conformal calibration, a post-hoc method for improving the robustness

of Deep Q-Learning agents under distribution shift. By adapting conformal prediction to the

reinforcement learning setting, we develop a principled way to lower bound the Q-function of a

trained DQN without retraining the underlying policy. Two variants are proposed: CC-Disc,

which discretises the state–action space, and CC-NN, which applies nearest-neighbour search

across the state-space. Both methods demonstrated measurable gains in robustness on classic

control benchmarks and Lunar Lander, with CC-Disc excelling in low-dimensional settings and

CC-NN providing scalability to richer state spaces.

The theoretical framework grounded these methods in one-sided conformal inference, while

empirical results confirmed that calibrated pessimism can mitigate overestimation and improve

decision-time reliability. Importantly, these gains were achieved without the computational cost of

retraining or extensive hyperparameter search, highlighting post-hoc calibration as a lightweight

complement to existing methods such as Double DQN or Conservative Q-Learning.

More broadly, this thesis contributes to an alternative avenue; that reinforcement learning ob-

jectives need not be engineered solely through training-time modifications. Instead, post-training

calibration offers a practical alternative for retrofitting an existing agent. Recent years have

brought the advent of foundation models, large-scale training and compute-intensive meta-learning

43

approaches. In contrast to the typical tabula rasa RL paradigm, the ability to tune pre-trained

generalist policies may become increasingly important in effective deployment. We hope this work

is a small step in this direction.

44

Bibliography

[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An Optimistic Perspective on

Offline Reinforcement Learning. 2020. arXiv: 1907.04543 [cs.LG]. url: https://arxiv.

org/abs/1907.04543 (cit. on p. 16).

[2] Rishabh Agarwal et al. “Deep Reinforcement Learning at the Edge of the Statistical Precipice”.

In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34.

Curran Associates, Inc., 2021, pp. 29304–29320. url: https://proceedings.neurips.

cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf

(cit. on pp. 2, 30, 31, 57).

[3] Anastasios N. Angelopoulos and Stephen Bates. A Gentle Introduction to Conformal Predic-

tion and Distribution-Free Uncertainty Quantification. 2022. arXiv: 2107.07511 [cs.LG].

url: https://arxiv.org/abs/2107.07511 (cit. on p. 10).

[4] Anastasios Nikolas Angelopoulos, Rina Barber, and Stephen Bates. “Online conformal pre-

diction with decaying step sizes”. In: Proceedings of the 41st International Conference on

Machine Learning. Ed. by Ruslan Salakhutdinov et al. Vol. 235. Proceedings of Machine

Learning Research. PMLR, 21–27 Jul 2024, pp. 1616–1630. url: https://proceedings.

mlr.press/v235/angelopoulos24a.html (cit. on pp. 12, 40).

[5] Sunil Arya, David M. Mount, and Onuttom Narayan. “Accounting for boundary effects in

nearest neighbor searching”. In: Proceedings of the Eleventh Annual Symposium on Compu-

tational Geometry. SCG ’95. Vancouver, British Columbia, Canada: Association for Com-

puting Machinery, 1995, pp. 336–344. isbn: 0897917243. doi: 10.1145/220279.220315.

url: https://doi.org/10.1145/220279.220315 (cit. on p. 35).

[6] Leemon C. Baird. “Residual Algorithms: Reinforcement Learning with Function Approxi-

mation”. In: Proceedings of the Twelfth International Conference on Machine Learning. Ed.

by Armand Prieditis and Stuart J. Russell. San Francisco, CA: Morgan Kaufmann, 1995,

pp. 30–37. doi: 10.1016/B978-1-55860-377-6.50013-X (cit. on p. 16).

[7] Rina Barber et al. “Conformal prediction beyond exchangeability”. In: The Annals of Statis-

tics 51 (Apr. 2023). doi: 10.1214/23-AOS2276 (cit. on p. 24).

[8] M. G. Bellemare et al. “The Arcade Learning Environment: An Evaluation Platform for

General Agents”. In: Journal of Artificial Intelligence Research 47 (June 2013), pp. 253–279.

issn: 1076-9757. doi: 10.1613/jair.3912. url: http://dx.doi.org/10.1613/jair.3912

(cit. on p. 6).

45

https://arxiv.org/abs/1907.04543
https://arxiv.org/abs/1907.04543
https://arxiv.org/abs/1907.04543
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://arxiv.org/abs/2107.07511
https://arxiv.org/abs/2107.07511
https://proceedings.mlr.press/v235/angelopoulos24a.html
https://proceedings.mlr.press/v235/angelopoulos24a.html
https://doi.org/10.1145/220279.220315
https://doi.org/10.1145/220279.220315
https://doi.org/10.1016/B978-1-55860-377-6.50013-X
https://doi.org/10.1214/23-AOS2276
https://doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912

[9] Marc G. Bellemare, Will Dabney, and Rémi Munos. “A Distributional Perspective on Re-

inforcement Learning”. In: Proceedings of the 34th International Conference on Machine

Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learn-

ing Research. PMLR, June 2017, pp. 449–458. url: https://proceedings.mlr.press/

v70/bellemare17a.html (cit. on p. 12).

[10] Richard Bellman. “A Markovian Decision Process”. In: Journal of Mathematics and Me-

chanics 6.5 (1957), pp. 679–684. issn: 00959057, 19435274. url: http://www.jstor.org/

stable/24900506 (cit. on p. 5).

[11] Jon Louis Bentley. “Multidimensional binary search trees used for associative searching”.

In: Commun. ACM 18.9 (Sept. 1975), pp. 509–517. issn: 0001-0782. doi: 10.1145/361002.

361007. url: https://doi.org/10.1145/361002.361007 (cit. on p. 14).

[12] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic programming. Vol. 3. Opti-

mization and neural computation series. Athena Scientific, 1996, pp. I–XIII, 1–491. isbn:

1886529108 (cit. on p. 5).

[13] Greg Brockman et al. “OpenAI Gym”. In: (June 2016). doi: 10.48550/arXiv.1606.01540

(cit. on pp. 29, 41).

[14] Will Dabney et al. “Distributional reinforcement learning with quantile regression”. In: Pro-

ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth In-

novative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on

Educational Advances in Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18. New Orleans,

Louisiana, USA: AAAI Press, 2018. isbn: 978-1-57735-800-8 (cit. on p. 12).

[15] Thomas G. Dietterich and Jesse Hostetler. Conformal Prediction Intervals for Markov De-

cision Process Trajectories. 2022. arXiv: 2206.04860 [cs.LG]. url: https://arxiv.org/

abs/2206.04860 (cit. on p. 19).

[16] Scott Fujimoto, David Meger, and Doina Precup. “Off-Policy Deep Reinforcement Learn-

ing without Exploration”. In: Proceedings of the 36th International Conference on Ma-

chine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceed-

ings of Machine Learning Research. PMLR, Sept. 2019, pp. 2052–2062. url: https://

proceedings.mlr.press/v97/fujimoto19a.html (cit. on p. 16).

[17] A. Gammerman, V. Vovk, and V. Vapnik. “Learning by transduction”. In: Proceedings of

the Fourteenth Conference on Uncertainty in Artificial Intelligence. UAI’98. Madison, Wis-

consin: Morgan Kaufmann Publishers Inc., 1998, pp. 148–155. isbn: 155860555X (cit. on

p. 8).

[18] Isaac Gibbs and Emmanuel J. Candès. “Adaptive conformal inference under distribution

shift”. In: Proceedings of the 35th International Conference on Neural Information Processing

Systems. NIPS ’21. Red Hook, NY, USA: Curran Associates Inc., 2021. isbn: 9781713845393

(cit. on pp. 12, 14).

[19] Nikunj Gupta, Somjit Nath, and Samira Ebrahimi Kahou. CAMMARL: Conformal Action

Modeling in Multi Agent Reinforcement Learning. 2024. arXiv: 2306.11128 [cs.LG]. url:

https://arxiv.org/abs/2306.11128 (cit. on p. 19).

46

https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v70/bellemare17a.html
http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.48550/arXiv.1606.01540
https://arxiv.org/abs/2206.04860
https://arxiv.org/abs/2206.04860
https://arxiv.org/abs/2206.04860
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html
https://arxiv.org/abs/2306.11128
https://arxiv.org/abs/2306.11128

[20] Danijar Hafner et al. Mastering Diverse Domains through World Models. 2024. arXiv: 2301.

04104 [cs.AI]. url: https://arxiv.org/abs/2301.04104 (cit. on p. 56).

[21] Hado Hasselt. “Double Q-learning”. In: Advances in Neural Information Processing Systems.

Ed. by J. Lafferty et al. Vol. 23. Curran Associates, Inc., 2010. url: https://proceedings.

neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-

Paper.pdf (cit. on pp. 1, 17).

[22] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double

Q-learning. 2015. arXiv: 1509.06461 [cs.LG]. url: https://arxiv.org/abs/1509.06461

(cit. on pp. 1, 16, 17).

[23] Hado van Hasselt et al. Deep Reinforcement Learning and the Deadly Triad. 2018. arXiv:

1812.02648 [cs.AI]. url: https://arxiv.org/abs/1812.02648 (cit. on pp. 1, 16).

[24] Sihong He et al. Robust Multi-Agent Reinforcement Learning with State Uncertainty. 2023.

arXiv: 2307.16212 [cs.LG]. url: https://arxiv.org/abs/2307.16212 (cit. on p. 18).

[25] Peter Henderson et al. Deep Reinforcement Learning that Matters. 2019. arXiv: 1709.06560

[cs.LG]. url: https://arxiv.org/abs/1709.06560 (cit. on pp. 2, 31).

[26] Riashat Islam et al. Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for

Continuous Control. 2017. arXiv: 1708.04133 [cs.LG]. url: https://arxiv.org/abs/

1708.04133 (cit. on pp. 2, 31).

[27] Garud Iyengar. “Robust Dynamic Programming”. In: Math. Oper. Res. 30 (May 2005),

pp. 257–280. doi: 10.1287/moor.1040.0129 (cit. on p. 2).

[28] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A Survey. 1996.

arXiv: cs/9605103 [cs.AI]. url: https://arxiv.org/abs/cs/9605103 (cit. on p. 4).

[29] Dmitry Kalashnikov et al. QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based

Robotic Manipulation. 2018. arXiv: 1806.10293 [cs.LG]. url: https://arxiv.org/abs/

1806.10293 (cit. on p. 1).

[30] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: (2009),

pp. 32–33. url: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

(cit. on p. 10).

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with deep

convolutional neural networks”. In: Commun. ACM 60.6 (May 2017), pp. 84–90. issn: 0001-

0782. doi: 10.1145/3065386. url: https://doi.org/10.1145/3065386 (cit. on p. 1).

[32] Aviral Kumar et al. “Conservative Q-Learning for Offline Reinforcement Learning”. In:

Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33.

Curran Associates, Inc., 2020, pp. 1179–1191. url: https://proceedings.neurips.cc/

paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf (cit.

on pp. 1, 17).

[33] Aviral Kumar et al. “Stabilizing off-policy Q-learning via bootstrapping error reduction”. In:

Proceedings of the 33rd International Conference on Neural Information Processing Systems.

Red Hook, NY, USA: Curran Associates Inc., 2019 (cit. on p. 16).

47

https://arxiv.org/abs/2301.04104
https://arxiv.org/abs/2301.04104
https://arxiv.org/abs/2301.04104
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1812.02648
https://arxiv.org/abs/1812.02648
https://arxiv.org/abs/2307.16212
https://arxiv.org/abs/2307.16212
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1708.04133
https://arxiv.org/abs/1708.04133
https://arxiv.org/abs/1708.04133
https://doi.org/10.1287/moor.1040.0129
https://arxiv.org/abs/cs/9605103
https://arxiv.org/abs/cs/9605103
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf

[34] Yann LeCun et al. “Gradient-Based Learning Applied to Document Recognition”. In: Pro-

ceedings of the IEEE. Vol. 86. 11. 1998, pp. 2278–2324. url: http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.42.7665 (cit. on p. 10).

[35] Brian Lee and Nikolai Matni. “Single Trajectory Conformal Prediction”. In: 2024 IEEE 63rd

Conference on Decision and Control (CDC). 2024, pp. 3019–3024. doi: 10.1109/CDC56724.

2024.10886644 (cit. on p. 18).

[36] Jing Lei and Larry Wasserman. “Distribution-free Prediction Bands for Non-parametric

Regression”. In: Journal of the Royal Statistical Society Series B: Statistical Methodology

76.1 (July 2013), pp. 71–96. issn: 1369-7412. doi: 10.1111/rssb.12021. eprint: https://

academic.oup.com/jrsssb/article-pdf/76/1/71/49514328/jrsssb_76_1_71.pdf.

url: https://doi.org/10.1111/rssb.12021 (cit. on pp. 9, 18).

[37] Jing Lei et al. Distribution-Free Predictive Inference For Regression. 2017. arXiv: 1604.

04173 [stat.ME]. url: https://arxiv.org/abs/1604.04173 (cit. on p. 10).

[38] Jordan Lekeufack et al. Conformal Decision Theory: Safe Autonomous Decisions from Im-

perfect Predictions. 2024. arXiv: 2310.05921 [stat.ML]. url: https://arxiv.org/abs/

2310.05921 (cit. on pp. 18, 21).

[39] Sergey Levine. Reinforcement Learning in the Age of Foundation Models. Keynote talk, Re-

inforcement Learning Conference (RLC 2024). Keynote given Aug 10, 2024; video recording

available on YouTube. University of Massachusetts Amherst, Amherst, MA, USA: Reinforce-

ment Learning Conference (RLC), Aug. 2024. url: https://youtu.be/Az5BoT7lCYo?si=

S8Oi13Qb4OkpDir0&t=1272 (cit. on p. 17).

[40] Lars Lindemann et al. Safe Planning in Dynamic Environments using Conformal Prediction.

2023. arXiv: 2210.10254 [cs.RO]. url: https://arxiv.org/abs/2210.10254 (cit. on

p. 18).

[41] Ning Liu et al. “Learning the Dynamic Treatment Regimes from Medical Registry Data

through Deep Q-network”. In: Scientific Reports 9.1 (2019), p. 1495. doi: 10.1038/s41598-

018-37142-0 (cit. on p. 1).

[42] Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search

using Hierarchical Navigable Small World graphs. 2018. arXiv: 1603.09320 [cs.DS]. url:

https://arxiv.org/abs/1603.09320 (cit. on p. 15).

[43] Valery Manokhin. Awesome Conformal Prediction. Version v1.0.0. ”If you use Awesome

Conformal Prediction, please cite it as below.”. Apr. 2022. doi: 10.5281/zenodo.6467205.

url: https://doi.org/10.5281/zenodo.6467205 (cit. on p. 18).

[44] Huiying Mao, Ryan Martin, and Brian J. Reich. “Valid Model-Free Spatial Prediction”.

In: Journal of the American Statistical Association 119.546 (Jan. 2023), pp. 904–914. issn:

1537-274X. doi: 10.1080/01621459.2022.2147531. url: http://dx.doi.org/10.1080/

01621459.2022.2147531 (cit. on p. 25).

[45] Andrew Kachites Mccallum and Dana Ballard. “Reinforcement learning with selective per-

ception and hidden state”. AAI9618237. PhD thesis. 1996 (cit. on p. 14).

48

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
https://doi.org/10.1109/CDC56724.2024.10886644
https://doi.org/10.1109/CDC56724.2024.10886644
https://doi.org/10.1111/rssb.12021
https://academic.oup.com/jrsssb/article-pdf/76/1/71/49514328/jrsssb_76_1_71.pdf
https://academic.oup.com/jrsssb/article-pdf/76/1/71/49514328/jrsssb_76_1_71.pdf
https://doi.org/10.1111/rssb.12021
https://arxiv.org/abs/1604.04173
https://arxiv.org/abs/1604.04173
https://arxiv.org/abs/1604.04173
https://arxiv.org/abs/2310.05921
https://arxiv.org/abs/2310.05921
https://arxiv.org/abs/2310.05921
https://youtu.be/Az5BoT7lCYo?si=S8Oi13Qb4OkpDir0&t=1272
https://youtu.be/Az5BoT7lCYo?si=S8Oi13Qb4OkpDir0&t=1272
https://arxiv.org/abs/2210.10254
https://arxiv.org/abs/2210.10254
https://doi.org/10.1038/s41598-018-37142-0
https://doi.org/10.1038/s41598-018-37142-0
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
https://doi.org/10.5281/zenodo.6467205
https://doi.org/10.5281/zenodo.6467205
https://doi.org/10.1080/01621459.2022.2147531
http://dx.doi.org/10.1080/01621459.2022.2147531
http://dx.doi.org/10.1080/01621459.2022.2147531

[46] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Na-

ture 518.7540 (Feb. 2015), pp. 529–533. issn: 00280836. url: http://dx.doi.org/10.

1038/nature14236 (cit. on pp. 1, 4, 6).

[47] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013. arXiv: 1312.

5602 [cs.LG]. url: https://arxiv.org/abs/1312.5602 (cit. on p. 6).

[48] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: CoRR

abs/1312.5602 (2013). arXiv: 1312.5602. url: http://arxiv.org/abs/1312.5602 (cit. on

p. 1).

[49] Janosch Moos et al. “Robust Reinforcement Learning: A Review of Foundations and Recent

Advances”. In: Machine Learning and Knowledge Extraction 4.1 (2022), pp. 276–315. issn:

2504-4990. doi: 10.3390/make4010013. url: https://www.mdpi.com/2504-4990/4/1/13

(cit. on pp. 1, 7, 29, 30).

[50] Stephen M. Omohundro. “Five Balltree Construction Algorithms”. In: 2009. url: https:

//api.semanticscholar.org/CorpusID:61067117 (cit. on p. 14).

[51] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete Representation

Learning. 2018. arXiv: 1711.00937 [cs.LG]. url: https://arxiv.org/abs/1711.00937

(cit. on p. 14).

[52] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

2019. arXiv: 1912.01703 [cs.LG]. url: https://arxiv.org/abs/1912.01703 (cit. on

p. 29).

[53] Andy Patterson. PyFixedReps: Python Fixed Representations. https://github.com/andnp/

PyFixedReps. Version accessed August 2025. 2025 (cit. on p. 29).

[54] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine

Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 29).

[55] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. Wiley Series in Probability and Statistics. Wiley, 1994. isbn: 978-0-47161977-2. doi:

10.1002/9780470316887. url: https://doi.org/10.1002/9780470316887 (cit. on p. 5).

[56] Antonin Raffin. RL Baselines3 Zoo. https://github.com/DLR-RM/rl-baselines3-zoo.

2020 (cit. on pp. 29, 54).

[57] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Implementations”.

In: Journal of Machine Learning Research 22.268 (2021), pp. 1–8. url: http://jmlr.org/

papers/v22/20-1364.html (cit. on pp. 2, 29).

[58] Shyam Sundhar Ramesh et al. Distributionally Robust Model-based Reinforcement Learning

with Large State Spaces. 2023. arXiv: 2309.02236 [cs.LG]. url: https://arxiv.org/abs/

2309.02236 (cit. on p. 8).

[59] Martin Riedmiller. “Neural Fitted Q Iteration – First Experiences with a Data Efficient

Neural Reinforcement Learning Method”. In: Machine Learning: ECML 2005. Ed. by João

Gama et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 317–328. isbn: 978-3-

540-31692-3 (cit. on p. 6).

49

http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.3390/make4010013
https://www.mdpi.com/2504-4990/4/1/13
https://api.semanticscholar.org/CorpusID:61067117
https://api.semanticscholar.org/CorpusID:61067117
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://github.com/andnp/PyFixedReps
https://github.com/andnp/PyFixedReps
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/2309.02236
https://arxiv.org/abs/2309.02236
https://arxiv.org/abs/2309.02236

[60] Yaniv Romano, Evan Patterson, and Emmanuel J. Candès. Conformalized Quantile Regres-

sion. 2019. arXiv: 1905.03222 [stat.ME]. url: https://arxiv.org/abs/1905.03222

(cit. on p. 12).

[61] G. Rummery and Mahesan Niranjan. “On-Line Q-Learning Using Connectionist Systems”.

In: Technical Report CUED/F-INFENG/TR 166 (Nov. 1994) (cit. on p. 6).

[62] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. 2007. arXiv: 0706.3188

[cs.LG]. url: https://arxiv.org/abs/0706.3188 (cit. on p. 8).

[63] S Sheng et al. “Safe POMDP online planning among dynamic agents via adaptive conformal

prediction”. In: IEEE Robotics and Automation Letters 9.11 (2024), pp. 9946–9953 (cit. on

p. 19).

[64] Kegan J. Strawn, Nora Ayanian, and Lars Lindemann. “Conformal Predictive Safety Filter

for RL Controllers in Dynamic Environments”. In: IEEE Robotics and Automation Letters

8.11 (Nov. 2023), pp. 7833–7840. issn: 2377-3774. doi: 10.1109/lra.2023.3322644. url:

http://dx.doi.org/10.1109/LRA.2023.3322644 (cit. on p. 18).

[65] Jiankai Sun et al. “Conformal Prediction for Uncertainty-Aware Planning with Diffusion

Dynamics Model”. In: Advances in Neural Information Processing Systems. Ed. by A. Oh

et al. Vol. 36. Curran Associates, Inc., 2023, pp. 80324–80337. url: https://proceedings.

neurips.cc/paper_files/paper/2023/file/fe318a2b6c699808019a456b706cd845-

Paper-Conference.pdf (cit. on p. 18).

[66] Richard S. Sutton. “Dyna, an integrated architecture for learning, planning, and reacting”.

In: SIGART Bull. 2.4 (July 1991), pp. 160–163. issn: 0163-5719. doi: 10.1145/122344.

122377. url: https://doi.org/10.1145/122344.122377 (cit. on p. 57).

[67] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second.

The MIT Press, 2018. url: http://incompleteideas.net/book/the-book-2nd.html

(cit. on pp. 1, 4, 6, 13, 14).

[68] Muhammad Faaiz Taufiq et al. Conformal Off-Policy Prediction in Contextual Bandits. 2022.

arXiv: 2206.04405 [stat.ML]. url: https://arxiv.org/abs/2206.04405 (cit. on p. 19).

[69] Sebastian Thrun and Anton Schwartz. “Issues in Using Function Approximation for Rein-

forcement Learning”. In: Oct. 1993 (cit. on pp. 1, 16).

[70] Ryan Tibshirani. Conformal Prediction. Lecture notes, Advanced Topics in Statistical Learn-

ing, Spring 2023. 2023 (cit. on p. 11).

[71] Ryan J. Tibshirani et al. Conformal Prediction Under Covariate Shift. 2020. arXiv: 1904.

06019 [stat.ME]. url: https://arxiv.org/abs/1904.06019 (cit. on p. 19).

[72] Josh Tobin et al. Domain Randomization for Transferring Deep Neural Networks from Sim-

ulation to the Real World. 2017. arXiv: 1703.06907 [cs.RO]. url: https://arxiv.org/

abs/1703.06907 (cit. on p. 2).

[73] Mark Towers et al. Gymnasium: A Standard Interface for Reinforcement Learning Environ-

ments. 2024. arXiv: 2407.17032 [cs.LG]. url: https://arxiv.org/abs/2407.17032

(cit. on pp. 29, 41).

50

https://arxiv.org/abs/1905.03222
https://arxiv.org/abs/1905.03222
https://arxiv.org/abs/0706.3188
https://arxiv.org/abs/0706.3188
https://arxiv.org/abs/0706.3188
https://doi.org/10.1109/lra.2023.3322644
http://dx.doi.org/10.1109/LRA.2023.3322644
https://proceedings.neurips.cc/paper_files/paper/2023/file/fe318a2b6c699808019a456b706cd845-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fe318a2b6c699808019a456b706cd845-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fe318a2b6c699808019a456b706cd845-Paper-Conference.pdf
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2206.04405
https://arxiv.org/abs/2206.04405
https://arxiv.org/abs/1904.06019
https://arxiv.org/abs/1904.06019
https://arxiv.org/abs/1904.06019
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032

[74] John N. Tsitsiklis and Benjamin Van Roy. “An Analysis of Temporal-Difference Learning

with Function Approximation”. In: IEEE Transactions on Automatic Control 42.5 (1997),

pp. 674–690. doi: 10.1109/9.580874 (cit. on pp. 1, 16).

[75] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning in a Random

World. Berlin, Heidelberg: Springer-Verlag, 2005. isbn: 0387001522 (cit. on pp. 2, 21).

[76] Vladimir Vovk et al. “Nonparametric predictive distributions based on conformal predic-

tion”. In: Proceedings of the Sixth Workshop on Conformal and Probabilistic Prediction and

Applications. Ed. by Alex Gammerman et al. Vol. 60. Proceedings of Machine Learning Re-

search. PMLR, 13–16 Jun 2017, pp. 82–102. url: https://proceedings.mlr.press/v60/

vovk17a.html (cit. on p. 21).

[77] Kaixin Wang et al. Bring Your Own (Non-Robust) Algorithm to Solve Robust MDPs by

Estimating The Worst Kernel. 2024. arXiv: 2306.05859 [cs.LG]. url: https://arxiv.

org/abs/2306.05859 (cit. on pp. 21, 30).

[78] C. J. C. H. Watkins. “Learning from Delayed Rewards”. PhD thesis. King’s College, Oxford,

1989 (cit. on pp. 1, 6).

[79] Tianshu Wei, Yanzhi Wang, and Qi Zhu. “Deep Reinforcement Learning for Building HVAC

Control”. In: Proceedings of the 54th Annual Design Automation Conference 2017. DAC ’17.

Austin, TX, USA: Association for Computing Machinery, 2017. isbn: 9781450349277. doi:

10.1145/3061639.3062224. url: https://doi.org/10.1145/3061639.3062224 (cit. on

p. 1).

[80] XiaoDan Wu et al. “A value-based deep reinforcement learning model with human expertise

in optimal treatment of sepsis”. In: NPJ Digital Medicine 6.1 (2023), p. 15. doi: 10.1038/

s41746-023-00755-5 (cit. on p. 1).

[81] Yifan Wu, George Tucker, and Ofir Nachum. Behavior Regularized Offline Reinforcement

Learning. 2019. arXiv: 1911.11361 [cs.LG]. url: https://arxiv.org/abs/1911.11361

(cit. on p. 16).

[82] Yingying Zhang, Chengchun Shi, and Shikai Luo. “Conformal Off-Policy Prediction”. In:

Proceedings of The 26th International Conference on Artificial Intelligence and Statistics.

Ed. by Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent. Vol. 206. Proceedings

of Machine Learning Research. PMLR, 25–27 Apr 2023, pp. 2751–2768. url: https://

proceedings.mlr.press/v206/zhang23c.html (cit. on p. 19).

51

https://doi.org/10.1109/9.580874
https://proceedings.mlr.press/v60/vovk17a.html
https://proceedings.mlr.press/v60/vovk17a.html
https://arxiv.org/abs/2306.05859
https://arxiv.org/abs/2306.05859
https://arxiv.org/abs/2306.05859
https://doi.org/10.1145/3061639.3062224
https://doi.org/10.1145/3061639.3062224
https://doi.org/10.1038/s41746-023-00755-5
https://doi.org/10.1038/s41746-023-00755-5
https://arxiv.org/abs/1911.11361
https://arxiv.org/abs/1911.11361
https://proceedings.mlr.press/v206/zhang23c.html
https://proceedings.mlr.press/v206/zhang23c.html

Appendix A

Pseudocode

We present pseudocode for both CC-Disc and CC-NN. The full code is available at https:

//github.com/foty-hub/msc_thesis.

Algorithm 1 CC-Disc: Discretised Conformal Calibration

Calibration
Require: α P r0, 1q, ncalib, mincalib, learned DQN Qθ, discount factor γ
1: Observe ncalib transitions on nominal environment and fill replay buffer DC

2: Define Discretise function and n features Ź eg. bins, tile coding, tree
3: Initialize array Scores[1..n features] with empty deques, maxlen ě mincalib
4: for transition ps, a, r, s1q P DC do Ź Build calibration sets
5: ϵ Ð Qθps, aq ´

`

r ` γmaxa1 Qθps1, a1q
˘

6: i Ð Discretiseps, aq

7: Append ϵ to Scores[i]

8: for i in n features do Ź Compute offsets per discretised state
9: m “len(Scores[i])

10: if m ě mincalib then
11: tα Ð rpm ` 1qp1 ´ αqs{m
12: δps,aq Ð Quantiletα

`

Scores[i]
˘

13: Set undervisited bin offsets to δfallback “ maxs,a δ
ps,aq

Inference - Action Selection
1: Receive state s from environment
2: a “ argmaxa1 Qθps, a1q ´ δps,a1

q

52

https://github.com/foty-hub/msc_thesis
https://github.com/foty-hub/msc_thesis

Algorithm 2 CC-NN: Nearest-Neighbour Conformal Calibration

Calibration
Require: α P r0, 1q, ncalib, learned DQN Qθ, discount factor γ, k, max distance quantile d̂ P r0, 1q

1: tα Ð rpk ` 1qp1 ´ αqs{k
2: Observe ncalib transitions on nominal environment and fill replay buffer DC

3: Initialize array Scores[1..n calib] as zeros
4: for transition zi “ ps, a, r, s1q P DC do Ź Score each observed state-action pair
5: Scores[i] Ð Qθps, aq ´

`

r ` γmaxa1 Qθps1, a1q
˘

6: max distance Ð Quantiled̂
␣

pdiÑkq
ncalib
i“1

(

Ź diÑk is distance to the kth neighbour

7: Compute δfallback “ maxs,a δ
ps,aq

Inference
1: Get state s from environment
2: for a P A do
3: distances, indices Ð nekps, aq Ź Get k-nearest neighbours
4: if max(distances) ą max distance then Ź Out-of-distribution
5: δps,aq “ δfallback
6: else
7: δps,aq Ð Quantiletα

`

Scores[indices]
˘

Ź Compute correction

8: a “ argmaxa1 Qθps, a1q ´ δps,a1
q

53

Appendix B

Experimental Hyperparameters

B.1 DQN hyperparameters

All hyperparameters for experiments are displayed in Table B.1. Hyperparameters are sourced

from Stable Baselines Zoo [56]. A learning rate of 3e-4 was used for all DDQN and CQL-DQN

runs to achieve more stable learning. The CQL weight parameter β is listed in Table B.1.

Hyperparameter Acrobot Cart Pole Lunar Lander Mountain Car

training steps 100,000 50,000 100,000 120,000
learning rate 6.3e-4 3.0e-4 6.3e-4 4.0e-3
batch size 128 64 128 128
buffer size 50000 100000 50000 10000
learning starts 0 1000 0 1000
gamma 0.99 0.99 0.99 0.98
target update interval 250 10 250 600
train freq 4 256 4 16
gradient steps -1 128 1 8
exploration fraction 0.12 0.16 0.12 0.20
exploration final eps 0.10 0.04 0.10 0.07
net arch [256, 256] [256, 256] [256, 256] [256, 256]
CQL-β 1.0 1.0 0.1 2.0

Table B.1: Stable baseline 3 DQN hyperparameters used for each environment.
Hyperparameters are sourced from Raffin [56].

B.2 Conformal Calibration hyperparameters

Parameters for conformal calibration were kept consistent across environments. A full list of

parameters is presented in Table B.3

54

Hyperparameter CC-Disc CC-NN

α 0.01 0.1
Calibration transitions 10, 000 10, 000
Score function Signed Signed
Return type TD TD
Bins per dimension 6 –
Min. calibration examples 50 –
Max. calibration examples 500 –
k – 50
Max. distance quantile – 0.9

Table B.2: List of hyperparameters used in experiments for conformal calibra-
tion. Hyperparameters were kept consistent across experiments and environ-
ments unless noted otherwise. A uniform grid was used as the default discreti-
sation method for CC-Disc.

B.3 Reward Thresholds

In order to identify which seeds to include or exclude when evaluating policies, we use reward

thresholds: if an agent achieves a mean reward above this threshold on the nominal environment

is it considered to solve the environment.

Gym Environment Reward Threshold rmin

Acrobot-v1 -100 -200
MountainCar-v0 -110 -200
CartPole-v1 490 0
LunarLander-v3 200 0

Table B.3: Reward thresholds for the different Gym environments used in eval-
uation.

55

Appendix C

Conformal Prediction for World

Models

One early research direction was the application of conformal prediction for a learned dynamics

model, treating next-state predictions as classification over a discrete state space. Using conformal

prediction, we calibrated next-state predictions to produce a set containing the true next state

with a specified miscoverage rate. This could then be used to induce conservatism by acting with

respect to the worst-case outcomes in the prediction set. However we discontinued this research

direction for two reasons; due to the variance in calibration set formation, the true coverage rate

varies, which is problematic if using a greedy policy with respect to world model predictions—a

minor miscalibration leads to extreme conservatism and suboptimal policies. Additionally, most

modern work in world modelling, such as Dreamer [20], uses probabilistic world models which

output a distribution over next states. These are better suited to sampling predictions than

conformal prediction sets which, as a distribution-free method, provide no method for sampling

from them. We found that, when evaluated on the gridworld problem FrozenLake, the conformal

prediction world model was substantially improved by taking a simple expectation over all next

states, rather than acting with respect to the worst outcome in the prediction set. This finding held

on both the nominal environment (see Figure C.1), and the test environment after distribution

shift.

56

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 (I

QM
 o

f R
et

ur
ns

)

Conformalised

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Expectation

p=0.0 p=0.15 p=0.3 p=0.6

Figure C.1: Training dynamics of a Dyna-V agent [66] using a one-step world
model for action selection, evaluated on the FrozenLake environment with vary-
ing slip probabilities. The conformalised agent uses conformal prediction to
pessimistically predict, and avoid, the worst-case outcome. The expectation
agent takes an expectation over world model predictions. Plots indicate the
inter-quartile mean of returns with 95% bootstrapped confidence intervals, as
recommended by Agarwal et al. [2].

57

Appendix D

Generative AI Disclosure

Generative AI was used in this project for the following purposes:

• OpenAI o3, Ai2 Paper Finder and Gemini 2.5-Pro were employed to find papers and related

methods alongside normal literature review.

• OpenAI GPT-5 and Codex CLI were used for ancillary coding tasks such as styling plots

and adding command-line parsing. Core algorithmic implementations, including baselines,

were written without AI assistance.

• OpenAI GPT-5 and Gemini 2.5-Pro were employed to critique drafts of the written thesis

and contribute a skeleton structure early. The content itself was written and edited by hand

(or by keyboard at least).

• OpenAI GPT-5 was used for some LATEX formatting.

58

	Introduction
	Background
	Reinforcement Learning
	Introduction to Reinforcement Learning
	Q-Learning
	Deep Q-Networks
	Distribution Shift
	Robust RL

	Conformal Prediction
	Full Conformal Prediction
	Exchangeability
	Split Conformal Prediction
	Conformal Prediction: Regression
	Conformal Inference under Distribution Shift

	State-Space Discretisation
	Efficient Nearest-Neighbour Search

	Summary

	Related Work
	Overoptimism in DQNs
	Double Deep Q-Networks
	Conservative Q-Learning

	Conformal Prediction in RL
	Multi-Agent RL
	Policy evaluation

	Summary

	Approach
	Problem Setup and Notation
	Assumptions of Conformal Prediction
	Theoretical Framework
	State Space Aggregation
	Conformal Calibration Framework
	One-Sided Split Conformal Inference
	Coverage Gap in Continuous Spaces
	Uncalibrated regions

	CC-Disc: Discretised Conformal Calibration
	Partitioning the State-Action Space
	Algorithm (CC-Disc)

	CC-NN: Nearest-Neighbour Conformal Calibration
	Offline Observation
	kNN Quantile at Test Time
	Algorithm (CC-NN)

	Summary

	Results
	Experimental Setup
	Results: Performance Evaluation
	Cart Pole
	Comparison to Baselines
	Classic Control and Lunar Lander
	Computational Overhead
	Limited effect on the Acrobot environment
	Coverage

	Results: Design Choices and Hyperparameters
	Discretisation Methods
	Score function comparison
	Monte Carlo vs TD Return
	Effect of alpha
	Test-time adaptation

	Summary

	Conclusion
	Limitations
	Future Work
	Conclusion

	Pseudocode
	Experimental Hyperparameters
	DQN hyperparameters
	Conformal Calibration hyperparameters
	Reward Thresholds

	Conformal Prediction for World Models
	Generative AI Disclosure

