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Abstract

The Deep Q-Network (DQN) is a powerful reinforcement learning algorithm which has achieved
superhuman performance in domains including game playing, by effectively combining Q-learning
with deep neural networks for function approximation. However, DQNs fail in the face of dis-
tribution shift due to overoptimism about previously unseen actions. Prior work addresses this
via expensive train-time modifications which require re-tuning the entire training process from
scratch. In this thesis, we propose and evaluate an alternative approach: conformal calibration.
Our method calibrates the value-function of a DQN by observing the agent for as few as 10
episodes, using the apparatus of conformal prediction to derive a theoretically-valid lower bound
on the value function. Experiments on classic control show that a calibrated DQN achieves up to
70% higher reward over a range of distribution shifts, with a nearest-neighbour variant achieving

11% improvement on the more challenging Lunar Lander environment.
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Nomenclature

Conformal Prediction

« Miscoverage rate

) Conformal offset, usually denoted by ¢ in CP literature.
€(y,9) Score function, usually denoted by s or A in CP literature.
C Prediction interval

D, Calibration set

ta Corrected quantile

Reinforcement Learning

A Action space

B8 Conservative Q-Learning parameter

n Learning rate

v Discount factor «y € [0, 1]

D, Replay buffer

P Set of possible transition kernels

M Nominal environment

M Test environment with shifted transition kernel
m Policy

S State space

Qo¢(s,a) Action-value function with parameters 6
{Sk}E | Discrete state clusters, with K bins
ag Action taken at time step ¢

P Nominal transition kernel



P Shifted transition kernel

Tt Reward received at time step ¢
Sy State at time step t

Other symbols

X Cartesian product



Chapter 1

Introduction

Reinforcement learning (RL) agents learn to take decisions in a given environment to maximise
their expected positive outcome. This is a powerful, natural approach; unlike supervised and
unsupervised learning methods which rely on human-generated data, RL agents learn how to
navigate an environment purely via interaction. In this way, RL agents are able to discover
strategies and approaches which exceed the efficacy and generality of human-engineered solutions.

One success story of modern RL is the Deep Q-Network (DQN) [48], which paired the Q-
learning algorithm [78] with advancements in deep learning following the success of AlexNet in
2012 [31]. In 2015, Mnih et al. [46] showed that a DQN-based agent was able to match or exceed
human skill on a wide range of Atari games, without relying on human-generated data or per-
game tuning. This breakthrough precipitated a wave of interest in deep RL, and the DQN and
its descendants have since been applied to myriad problems including robotics [29], medicine, [41,
80], energy use optimisation [79] and more.

However, one persistent issue with Q-learning and DQN-based agents is perennial overoptimism
due to a maximisation term in the value-function update [69, 21, 22]. This can impede learning,
as an agent mistakenly believes low-value actions to be better than they truly are. In a worst-
case scenario, overoptimism in Q-learning can lead to a total collapse in performance, due to the
so-called “deadly triad” [74, 67, 23].

One important consequence of overoptimism in DQNs is that it leads to brittle policies in the
face of distribution shift [32, 49]. Distribution shift occurs when the environment in which an
agent acts changes; a robot operating on an oil rig might start to rust and move more slowly, or a
self-driving car trained in sunny weather might have to adapt to icy conditions. Distribution shift
is a critical challenge in the real-world deployment of RL agents. The world is complex, and it is
virtually impossible to account for all possible shifts in the environment during training. Agents
which react unpredictably to distribution shift may become unsafe, endangering themselves or
humans in their vicinity. For this reason, it is imperative to train robust policies which maintain
performance in the face of distribution shift.

Most research into robustness works by inducing more pessimistic or conservative policies [49].
Since distribution shift leads agents to out-of-distribution states which they have not experienced
during learning, pessimism about unknown outcomes leads agents to stay in-distribution in the

face of uncertainty. For example, Conservative Q-Learning (CQL) [32] learns a pessimistic lower



bound estimate of the likely reward from a state, leading an agent to discount previously-unseen
actions. More broadly, the field of robust RL formalises a pessimistic notion of the environment
[27], either by considering the worst-case outcome at each time step, or treating the environment
as an adversary to the agent.

One issue with these methods, however, is they are typically expensive training-time modifica-
tions. For example, CQL introduces an expensive logsumezp term into the value update. Domain
randomisation, a popular robust RL method [72], requires training an agent many times, over a
range of distribution shifts. Since they modify the training loop, achieving optimal performance
with these methods may also require restarting hyperparameter optimisation from scratch, which
can be costly and challenging; a standard DQN implementation has at least 13 hyperparameters
[57]. In fact, prior work finds that many reported improvements in the deep RL literature can be
attributed to insufficient hyperparameter tuning of baselines [2, 25, 26].

In order to address this problem, we investigate the application of conformal prediction (CP)
[75] to the RL setting. Conformal prediction is a post-hoc method applied to a learned predictor
which allows a practitioner to make finite-sample guarantees about the uncertainty of a prediction
without any distributional assumptions. It works by comparing the prediction over new test points
to prior predictions on a held-out calibration set. By treating a DQN (or any equivalent value-
based method) as a regression function, we can apply conformal prediction to an already-trained
agent, calibrating it without training-time modifications. However, conformal prediction relies on
the assumption that the training data for a learned function is exchangeable—that any shuffled
ordering of the training data is consistent with some fixed joint probability. This property, which
is often trivial in the supervised learning setting where i.i.d. data is assumed, is violated in RL,
as agents experience time-ordered observations in an online manner. In this thesis, therefore, we

will explore the following questions:

e How can conformal prediction be adapted to reinforcement learning to mitigate overoptimism
in DQN agents?

e Which assumptions of conformal prediction can be relaxed to leverage it in a practical

implementation?

By exploring the above questions, we arrive at conformal calibration, a method for lower bound-
ing the value function of a learned DQN to improve robustness. We develop two plug-in variants;
a discretised version, CC-Disc (illustrated in Figure 1.1), stores corrections per state—action bin
and incurs minimal runtime cost, and CC-NN, a nearest-neighbour version, computes corrections
at run-time from previously observed nearby states, trading extra lookup overhead for better
memory scaling with state-space dimension.

We will begin by describing relevant background knowledge in reinforcement learning, con-
formal prediction, and distribution shift in chapter 2. In chapter 3 we proceed to describe prior
work which either addresses overoptimism in DQNs or applies conformal prediction to the RL
setting. Chapter 4 introduces conformal calibration with a theoretical motivation, accompanied
by descriptions of the two different state-aggregation methods used in CC-Disc and CC-NN. We
present empirical results in chapter 5, demonstrating that calibration improves robustness, and
testing design choices. Limitations of this work and potential future directions are discussed in

chapter 6
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Figure 1.1: Tllustration of conformal calibration with the CC-Disc algorithm.
Line plots illustrate the true g-function in black, the learned approximation
Qo in red, and a piecewise lower bounded approximation after calibration (see
§ 3.1.1). The agent does not leverage information from the test-time envi-
ronment; calibration is conducted only on the nominal environment. Earth,
Moon and robot logos used with permission from Freepik, vectorsmarket15 and
Casanova Studio via flaticon.com.
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Chapter 2

Background

To explain the ideas underpinning conformal calibration, we first introduce the reinforcement learn-
ing (RL) setting, Q-learning and the Deep Q-Network. These are powerful RL algorithms which
have been shown to exceed human-level capability in settings such as Atari videogame-playing
[46]. We also touch on distribution shift in reinforcement learning and the related field of Robust
RL. We introduce conformal prediction, a distribution-free approach to uncertainty estimation
with point predictors. Finally, we introduce background concepts around state-space aggregation

and nearest neighbour search which will be employed as we move into real implementations.

2.1 Reinforcement Learning

2.1.1 Introduction to Reinforcement Learning

The field of reinforcement learning (RL) examines how agents can learn to act through trial-
and-error interactions in an environment, with the goal of maximising long-term reward [67, 28].
Unlike supervised learning, the data distribution is policy-dependent and non-i.i.d.; actions affect
future states and information, creating exploration—exploitation trade-offs and temporal credit-
assignment challenges. The typical RL setting consists of an agent which takes actions a according
to a policy 7(a | s), where s is the state of the environment. Consider the case of a cleaning robot,
as paraphrased from Sutton and Barto [67]. The level of battery charge is the state, and the robot
can execute two actions; collecting rubbish or charging the battery. Note that s can encode both
the internal state of the agent, as well as the external environment. With high battery, a good

policy chooses to collect rubbish,

m(charge | high) =0, m(collect | high) = 1.

With low battery, the policy instead chooses to charge the robot’s battery,

m(charge | low) =1, m(collect | low) = 0.

By doing so, the robot will return its battery to a high level of charge, so that it can go on to collect

rubbish. The change of state following an action is mediated by the transition kernel P(- | s,a),



a probability distribution over future states following the agent’s action in a given state. In this
way, the agent interacts with the environment in a loop, taking actions which alter the state of
the environment. This loop can be either episodic, stopping after T' timesteps, or infinite-horizon.

The formalism used to describe RL environments is the Markov Decision Process (MDP). In

this work we consider a finite, discounted MDP
M = (87 A’ T? P’ 7)7

where S and A are measurable state and action spaces, r : S x A — R is a bounded reward
function, P(- | s,a) is the transition kernel which dictates how the state changes after actions, and
v € [0,1] is the discount factor which trades off near-term vs long-term reward [10, 55]. A policy
m(a | s) induces trajectories (sg,ag,71,S1,a1,72,...), where a; ~ 7w(- | $¢), St41 ~ P(- | S, az).

The objective we seek to maximise is the expected discounted return
& ’
J(m) = E[Z VT (s, atl)l .
=t

We define the value and action—value functions as the expected reward from a given state or

state—action pair at timestep t

0
VW(S) = Eﬂ— lz ’ytl*tr(st/,at/)

t'=t

St = 3] ) Q"(s,a) =E; lZ Vt,itr(st',at')

t'=t

St = S, atza].

They satisfy the Bellman expectation equations

V7(8) = Eqnn()[7(5,0) + YEgp(s.a) V" (5)],
Qﬂ(sv (1) = T(Sv (L) + 7E5’~P(~|s,a), a'~7(-|s") [Qﬂ-(sla a/)] .

The optimal values V*(s) = sup, V™ (s) and Q*(s, a) = sup, Q7 (s, a) obey the Bellman optimality

equations
V*(s) = max {T(S, a) + ’yEs/NP(.Ma)V*(s')},

Q*(Sa a) = ’I“(S, CL) + 7E8’~P(-\s a) [max Q*(S/, a/)] .
’ a’e A

Intuitively, the Bellman optimality equation says that if the optimal value function Q* is known
for all state-action pairs, then the optimal strategy is to select the action a’ maximising the
expected value of r + ymax, Q*(s,a). This strategy is known as a greedy policy 7*(s) €
arg maxge 4 Q*(s,a), and if Q* is optimal then 7* is also optimal [55].

The Bellman optimality operator 7

(TQ)(s,a) =7r(s,a) + YEgp(s,a) [{{}?X Q(s’7a/)]

is a y-contraction in |||, so repeated application converges to its unique fixed point Q* [10,

12]. These equations underlie value-based RL algorithms like Q-learning; evaluating the value of



a policy enables an agent to make decisions based on the expected outcome.

2.1.2 Q-Learning

Q-learning is an RL control algorithm devised by Watkins [78] in 1989. It is tabular—storing an
action-value for each state-action pair (s,a). Unlike on-policy methods like Sarsa, which directly
follow the policy being optimised [61], Q-learning is an off-policy algorithm which learns from
trajectories generated by an arbitrary behaviour policy p(a | s) # m(a | s). The off-policy nature
of Q-learning allows it to consider counterfactual events: “what if the agent had taken a different
action?” In contrast to Monte Carlo methods, which update action-values using the full trajectory
of rewards generated during an episode, Q-learning bootstraps—it uses only the immediate reward

and possible value of next states following an observed transition (s¢, as,r¢+1, St4+1)-

Q(st,at) — Q(s¢,a¢) +1 [Tt+1 + ’YE}S%Q(SH-LG/) —Q(s¢,a¢) |,

where s;, a; and r; are the states, actions and rewards observed at timestep ¢, and 7 is the
learning rate. A Q-learning agent acts using the greedy policy with respect to its learned action-

values

1, if a = argmax Q(s,a’)
m(a|s) = a’eA
0, otherwise.

2.1.3 Deep Q-Networks

Q-learning is powerful for classic control problems like gridworld navigation and blackjack [67].
However, as a tabular method, it is subject to the “curse of dimensionality”; if a state-action
space has D dimensions, each with n possible values, the number of required table entries grows
exponentially with the dimensionality as Nentries = n”. In environments with high-dimensional
states, like the pixel-based frame data of an Atari game [8], this leads to more table entries than
can be realistically be visited, inhibiting sample efficiency and generalisation. In continuous state
spaces, tabular methods do not work at all, requiring discretisation approaches like tile coding to
convert the problem into a tabular representation [67].

As a solution, prior work turned to function approximation to output action-values rather
than relying on a lookup table. The first notable application of neural network-based function
approximation to Q-learning was by Riedmiller [59], who introduced Fitted Q-Iteration (FQI) in
2005. FQI solved the Mountain Car environment in around 300 episodes, compared to 300,000 for
a tabular approach over a discretised state space. FQI is a fairly simple extension to Q-learning,
implementing batch updates via supervised learning.

Building on FQI, Mnih et al. proposed the Deep Q-Network (DQN) [47, 46], which introduces
two significant modifications. The first is experience replay, in which the learner maintains a replay
buffer D, of prior transitions, and uniformly samples from it during training. This improves sample
efficiency as datapoints are reused, as well decorrelating training batches for the neural network
(consider the difference between supervised learning on sorted vs shuffled data). The second

modification is the introduction of a target network, which uses frozen parameters 6—. The target



length = 0.5 length = 0.8

Figure 2.1: Example of distribution shift in the Cart Pole environment, in which
the goal is to keep the pole close to vertical. The agent learns with length=0.5,
but is evaluated on a different length pole, altering the moment of inertia and
hence transition dynamics.

network, which is only updated intermittently, is used for bootstrapping, providing a more stable
learning target. The DQN uses backpropagation to update the Q-network, using a squared TD

error as loss function (alternatives include a MAE or Huber loss)

2
L(G) = E(s,a,r,s’)~D [(T + ’YH%?‘X QG* (5/7 a,)) - QO(Sv a)) ] .

One common issue with the DQN is Q-value owverestimation—the max in the update can
lead the learner to overfit to approximation error. Combined with bootstrapping and off-policy
learning (so the agent bootstraps off actions which it never actually sees in the training data),
this overestimation can compound, impeding learning and leading the agent to take risky actions
under distribution shift. We explore this further in § 3.1.

2.1.4 Distribution Shift

A persistent challenge in RL is distribution shift, which occurs when the MDP seen during training
differs from the MDP at test-time. Examples could include a self-driving car trained in sunny
weather and deployed in rain, or a robotics policy trained in a simulator and deployed in the real
world. Distribution shift can affect both the transition kernel P(- | s,a) or reward function r, but
in this work we focus only on changes to the transition kernel. Agents which maintain performance
in the face of distribution shift are said to be robust. This is an attractive quality—robust policies
can be safer and reduce the need for retraining as the environment changes [49].

Another form of distribution shift in off-policy methods is the difference in states encountered
between a behaviour and target policy. Although we employ off-policy methods in this thesis, we

focus on distribution shift due to a change of transition kernel, not due to off-policy methods.

2.1.5 Robust RL

One paradigm concerned with mitigating distribution shift is Robust RL, which addresses train-

test discrepancies in the transition kernel, P — P’, by constructing an uncertainty set of possible



transition kernels P 3 P’.
M= (S, A, P,v) (nominal MDP), M = (S, A,r, P y) (test MDP).

It is common to make structural assumptions about P, such as assuming that P’ lies within a
fixed Kullback-Leibler divergence of the nominal kernel, Dy, (P||P’) < € [58]. Robust RL agents
solve a min-max optimisation problem for the worst case transition kernel. Including the (s,a)-
rectangularity assumption (that the worst MDP-level transition kernel is a combination of the

worst case for each state-action pair), we arrive at a robust learning objective

o ’
D1y (s, an)
!

t'=t

= R [

Str41 ~ P/('|St’7at’)] , P=X Ps.a
(s,a)

Although this thesis shares commonalities with Robust RL, we do not make explicit assump-
tions about P or adopt Robust RL methods. Instead, we induce robustness via action-value
conservatism. The Robust RL literature finds that pessimism improves robustness, but can be
limited. Making the most pessimistic assumption possible about P often leads to overly conser-
vative policies, hampering performance on the nominal environment. Consequently, much work
in Robust RL relaxes the assumptions of Robust MDPs to find a reasonable midpoint between
nominal performance and conservatism. This kind of tunable conservatism is an inherent strength

of the conformal prediction approach.

2.2 Conformal Prediction

Conformal prediction, introduced by Gammerman, Vovk and Vapnik in 1998 [17, 62], is a technique
that produces prediction regions for new data points with a guaranteed level of confidence. Unlike
most machine learning methods that provide point predictions, conformal prediction provides a
set of possible labels for a new object, containing the true label with a certain probability (e.g.
95% of the time).

More formally, conformal prediction allows us to construct a prediction set C which contains

the true value y, with a probability 1 — «, where « is the user-defined miscoverage rate:
PrlyeC]>1—-a

Notation. There is significant overlap between RL and conformal prediction notation. For
example, ¢ signifies action-values and quantile corrections respectively, s indicates a state or non-
conformity score, and « a learning rate and miscoverage rate. We use J for quantile corrections, €
for the nonconformity score and retain « for the miscoverage rate, with 7 for learning rates. Refer

to the Nomenclature section for a full listing.

2.2.1 Full Conformal Prediction

Vovk’s original paper introduces the idea of full conformal prediction. The method assesses how
“unusual” a new data point (x,11,%) is compared to the existing data (zo,..., 2,), where z; =

(24,y;). This is done using a nonconformity score € : J x J) — R, where a higher score means the



data point is more unusual. Examples of nonconformity scores include absolute residuals |y — g|
for regression and a likelihood-score 1 — p(y | z) for classification.

The full algorithm proceeds as follows. First, propose a candidate value y € . Next, compute
nonconformity scores for all data points z; in the training set using the candidate value y. To
compute ¢;, train a predictor f on all other data points z_;

€ = |yi — f-i(@i)l,  ent1 =y — f(Tns1)l
Next, compute the p-value,

1

ply) = ntl (#{i: € = €enq1}).

The p-value is the rank of the residual €, with respect to all residuals ¢;. Intuitively, a high
p-value indicates that the candidate value y would not be unusual compared to the rest of the
data.

Finally, iterate over candidate values y to form a prediction interval C. If the data is exchange-

able (see § 2.2.2), C is statistically guaranteed to achieve the specified coverage rate

C(xnt1) ={yeV:ply) = a}t, Prlyuuwe €C(rny1)] =1 -«

Without making any assumptions about the underlying distribution, conformal prediction
enables us to construct a prediction set with finite-sample guarantees. This is remarkably powerful,
but the procedure requires retraining O(n) times—once for each permutation of the training data—
which is computationally infeasible with modern models. As a tractable alternative, we instead

turn to split conformal prediction, as outlined in § 2.2.3.

Marginal Coverage Conformal prediction guarantees that prediction intervals will contain the
true value yiue, Subject to some miscoverage rate «. This guarantee applies to the marginal
distribution p(y), but not to the conditional distribution p(y|x), ie. in general Pr[Y; € C(X;)|X; =
x] * 1 — . In fact, Lei and Wasserman [36] prove that it is impossible to achieve conditional
coverage with non-infinite width prediction intervals. For an example distinguishing marginal and

conditional coverage, see Figure 2.4.

2.2.2 Exchangeability

One key assumption leveraged by conformal prediction is ezchangeability; that all possible order-

ings of the training data of an algorithm are equally likely under some underlying joint distribution

p:

p(z1, 22,5 2n) = P(26(1)s 20(2) - - - Zo(n))  for all permutations o

This property, which is weaker than the i.i.d. assumption, can often be assumed in supervised
learning. However, exchangeability poses a challenge in reinforcement learning; agents experience
time-ordered observations and state transitions. Exchangeability is, therefore, not satisfied by
default. We discuss this further in § 4.2.
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o

Figure 2.2: Examples of split conformal prediction for classification. Generated
using a convnet classifier on the CIFAR10 dataset which achieves 75% accuracy
on the test set [34, 30]. Applying conformal prediction with o = 0.1, prediction
sets contain the true value on 90% of test points.

2.2.3 Split Conformal Prediction

Due to the significant computational demands of full conformal prediction, it is more common
to employ split conformal prediction. In this paradigm, we partition the available data into a
training set Dr and held-out calibration set Do = {2z; = (i, 4:)}7,. We fit a predictor f on
Dr once, compute nonconformity scores on D¢, and use a single empirical quantile to calibrate
prediction sets for new inputs. The method delivers the same finite-sample, distribution-free
marginal coverage as full conformal prediction under exchangeability, at a fraction of the cost [37,

3]. Split conformal prediction proceeds as follows:
1. Fit the model. Train f on Dr only.
2. Calibrate. Compute calibration scores
= S(f(x1)7yl)7 t=1,...,m,

and let €1y < -+ < €(;n) be their order statistics. Define the conformal threshold as the

value corresponding to the 1 —a quantile of the residuals. t, here is a rounding factor which,
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when the quantile falls between discrete values, breaks ties in favour of the larger value.

[+ 1)(1 - )]

61—o = Quantile, ({&}7,), ta =

3. Predict. For a new input x,1, return the split conformal prediction set
C(anrl) = {y € y L€ <y7f<xn+l)) < qufa}~

Compared to full conformal prediction, the split approach replaces O(n) retrainings with a

single fit, making the method computationally tractable for large models or datasets. An example

is shown in Figure 2.2.

Coverage with a fixed calibration set. With a fixed calibration and training set, the coverage

guarantee of split conformal prediction follows a Beta distribution

Pr[Yn+1 € C(Xn+1|Dc,DT)]~ Beta(mts, m+ 1 —mty).

This does not affect theoretical results, which do not condition on the calibration set, but it
is relevant when evaluating empirical coverage. Plots of the coverage for different sizes of the

calibration set are shown in Figure 2.3.

m
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©
Q
o
[+
1
1
1
1
1
1
1
1
1
1
;
T T : T T
0.80 0.85 0.90 0.95 1.00

Coverage
Figure 2.3: When conditioning on a fixed calibration set, the expected coverage

follows a Beta distribution, narrowing with more calibration examples. Adapted
from a figure by Tibshirani [70].
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2.2.4 Conformal Prediction: Regression

Another application is conformal prediction on regression. In the deep RL setting, value functions
are examples of common regression functions; outputting typically scalar values for inputs of states
or state-action pairs, with the exception of some distributional approaches which output prediction
quantiles [9]. In this work, we will employ split conformal prediction in the regression setting for
the Q-function of a DQN.

Regression (split conformal). Given a point regressor f : X - R, compute calibration resid-

uals on D¢,
€ = ’yi—f(xi)|, 7;:1,...,m (m: |Dc|),

and let §;_, be their (1 — a)-empirical quantile with the standard [(m +1)(1 — «)] correction. For

a new x, return the symmetric band
C) = [ f(@) = b1 a, f2)+01a]-

This achieves finite-sample marginal 1 — a coverage under exchangeability. Note that this method

scales the prediction interval symmetrically. We will use a one-sided approach, discussed in § 4.5.1.

Conformalised quantile regression (CQR). To adapt to heteroskedastic, asymmetric noise,
fit quantile regressors fg, fu at levels /2 and 1 — /2 using a pinball loss. Calibrate one-sided

residuals

e = folz:) —yi, € =y — fulz),

with thresholds ¢, 6% from their empirical (1 — a)-quantiles (using the same [(m + 1)(1 — a)]

index). The prediction set is then
C(m) = [fg(.’];) - 6€7 fu('r) + 0 ]’

which retains marginal 1 — o coverage and typically yields tighter, better-targeted intervals than
symmetric residual bands [60]. The behaviour is illustrated in Figure 2.4. For compatibility with
a standard DQN we do not use quantile regression in this work, but it could be a reasonable

extension to combine conformal calibration with the QR-DQN of Dabney et al. [14].

2.2.5 Conformal Inference under Distribution Shift

Prior work investigates conformal prediction under distribution shift. Although we do not use
these methods in the default CC-Disc or CC-NN algorithms, we test an adaptive variant of
CC-Disc in § 5.3.5. Gibbs and Candeés [18] introduces a simple online update to the miscoverage

rate
Qi1 = 0 + n(a —I[yt ¢ Ct(l‘t)]),

where « is the user-specified desired miscoverage rate, Z is the indicator function, and 7 is
the learning rate. See Figure 2.5 for an implementation on a toy problem generating Gaussian

noise. Angelopoulos, Barber, and Bates [4] take a similar approach, but rather than modifying
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Figure 2.4: Example of conformal prediction for quantile regression. Generated
using a neural network quantile regressor with a pinball loss and oy, = 0.1, ap; =
0.9. Note that, although the prediction region achieves marginal coverage over
all data points, it does not satisfy conditional coverage; it over- and under-covers
in different regions of the data.

the miscoverage rate, they propose tweaking the interval size itself,

Opr1 = 0¢ + n(I[yt ¢ Ci(we)] — a).

2.3 State-Space Discretisation

DQNs are designed for continuous state-spaces, but as we discuss in § 4.2, conformal calibra-
tion benefits from conditioning on local state-spaces. One solution, which is common in the RL
literature, is state-space discretisation; binning continuous states into discrete-valued features.

Discretisation underpins the CC-Disc method we propose. Methods include:

Uniform binning. For each dimension of the state-action space we find an interval containing
most of the data—such as [5, 95] quantiles. Split this range evenly. Common numbers of bins
per dimension in experiments range from 4-10; higher bin counts harm robustness, due to the
loss of generalisation across unseen state-action pairs. This is simple and locality-preserving, but
suffers from the curse of dimensionality. If d is the dimensionality of the state-space and |A] is
the number of discrete actions K = |A| - (Npins)?.

Tile coding. Tile coding [67] overlays Nijine uniform grids (“tilings”) with small offsets. A
state activates one tile per tiling, yielding a sparse one-hot encoding. Tile coding still suffers from
the same fundamental limitations in higher-dimensional spaces K ~ \.A|NtihngsNgles. However,
tile coding introduces multiple new parameters that require tuning—not just the number of tiles,
but the number of tilings, and how they are formed and offset, which can make it more challenging

to tune.
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Adaptive Conformal Intervals across n
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Figure 2.5: Example of adaptive conformal inference [18]. The top row shows
data generated by a Gaussian N(us,1). The middle row shows the adaptive
miscoverage rate ay for different values of the responsiveness hyperparameter 7.
The lowest row shows the true coverage rate, with the true and mean coverage
rates shown by the black and blue lines respectively.

Adaptive discretisation. Rather than fixing partitions a priori, tree- or clustering-based schemes
refine where needed. A binary partition recursively splits the space to reduce prediction error,
yielding nonuniform, data-driven cells [45]. More generally, state aggregation maps many s to a
shared index i = ¢(s) via expert rules, PCA+clustering, or vector quantisation (e.g., learned code-
books), improving memory- and sample-efficiency but introducing approximation bias if dissimilar
states are merged [67, 45, 51].

2.3.1 [Efficient Nearest-Neighbour Search

Discretisation methods either face high-dimensionality limits (binning, tile coding) or are difficult
to generalise to arbitrary structures in state-space (PCA, tree, clustering, vector quantisation).
As a simple, flexible approach, we will also consider nearest-neighbour search, defining CC-NN.
Nearest neighbours provide a nonparametric representation for continuous S < R?: given a
query s, retrieve the set of k nearest points, then estimate values or dynamics from neighbours.
A brute-force scan over all data points scales linearly with dimensionality, O(mD), so in principle
scales more effectively to high-dimensional spaces than simple discretisation techniques. Meth-
ods like k-d trees and ball trees further enhance the efficiency of nearest-neighbour search by
caching locality in trees or hyperballs, although in spaces with more than 20-30 dimensions query

time degrades back towards brute force search [11, 50]. Further extensions to high dimensional
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Uniform Grid Tile Coding Binary Partition

: = :

Figure 2.6: Schematic illustrating discretisation schemes. A uniform grid splits
the space into fixed-width bins. Tile coding overlays multiple offset grids, where
activations are a one-hot-encoding with Niings active features. A binary parti-
tion recursively splits the space in a data-driven manner, with coarse aggregation
in unoccupied regions of the space.

spaces require approximate methods like Hierarchical Navigable Small Worlds (as used in vector
databases), which have been proven to scale to hundreds of embedding dimensions and millions
of data points[42].

2.4 Summary

In this chapter we introduced the core components of conformal calibration: the DQN and con-
formal prediction. We have described robustness in the face of distribution shift, the goal of
conformal calibration. Robust RL motivates the idea of pessimism in the face of distribution shift
which we will employ in conformal calibration. In the next section we turn to related work which

mitigates overoptimism and prior literature applying conformal prediction to the RL setting.
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Chapter 3

Related Work

In this chapter we discuss related work in two strands. The first is prior work addressing the issues
of DQN overoptimism in the face of distribution shift, as mentioned in § 2.1.3, namely the Double
Deep Q-Network and Conservative Q-Learning. The second is previous work applying conformal
prediction to the RL setting. We identify a gaps in the literature around the lack of prior work

on post-hoc refinements to address overoptimism

3.1 Overoptimism in DQNs

DQNs can exhibit serious failure modes. The method relies on bootstrapping, off-policy learning
and function approximation; the three elements of the “deadly triad.” In a worst-case scenario,
this can lead the action-value function to diverge, as demonstrated in both classical and deep RL
settings [6, 74, 23].

More generally, Q-learning is prone to overconfidence. In 1993, Thrun and Schwartz [69]
showed that bounded uniform random errors ~ Uniform(—e,¢), for example due to noise or

. . . . . . . —1
function approximation error, lead to a consistent overestimation of action values by ’yEIﬁI =g

Hasselt, Guez, and Silver [22] investigated the same effect in the deep RL setting, and showed
that even if value estimates are correct on average, estimation error of any kind can drive action-
value estimates away from the true optimal values. Intuitively, this is because the argmax term
over action values biases the agent towards overestimated values, as illustrated by Figure 3.1. This
overoptimism can be problematic under distribution shift, as the agent pursues out-of-distribution
actions which appear beneficial despite never being visited in the training data.

There is substantial work addressing the issue of overestimation as it relates to distribution
shift. One approach, typified by methods like batch-constrained RL, BEAR and BRAC, constrains
the policy to stay close to the empirical behaviour policy observed in offline data by limiting the
actions considered during updates [16, 33, 81]. This shortcuts the deadly triad by preventing an
agent from extrapolating too far from the data distribution. Alternatively, REM [1] addresses

bootstrapping error by using an ensemble of Q-networks.
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—— True Function
—=-- Approximation

Figure 3.1: Random symmetric approximation error leads to incorrect esti-
mates of the maxima of the action-value function due to the maximisation in
the Q-learning update. Vertical lines indicate argmax, which is biased by the
approximation error. This figure is inspired by a graphic presented by Sergey
Levine at RLC 2024 [39].

3.1.1 Double Deep Q-Networks

Double Deep Q-learning [22], an extension to the tabular Double Q-learning approach proposed
by Hasselt [21], directly addresses the overestimation bias inherent in the standard DQN target
calculation. The core insight of Double DQN (DDQN) is to decouple the selection of the best next
action from the evaluation of its value. While standard DQN uses the same target network for
both operations, DDQN uses the online network Q(-; ) to select the action and the target network
Q(+;07) to evaluate it. The target value Y; is thus modified from the standard DQN target,

JPAN _ 4 ”YH}?XQ(StJrlaa/?at_)’
to the DDQN target,

JPPAN — 4 'YQ(st+17 argmax Q(s¢41,a’; 0;); 9;)-
U//

By separating selection and evaluation, DDQN avoids the self-reinforcing cycle where an overesti-
mated value is both selected and used for the update. While the online network may still select an
action due to overestimation, it is unlikely that the independent target network, starting from a
separate initialisation, also overestimates the value of that same action. This simple modification
substantially reduces overestimation, leading to more stable training and more accurate final value

estimates.

3.1.2 Conservative Q-Learning

The work most closely related to conformal calibration is Conservative Q-Learning (CQL), pro-
posed by Kumar et al. [32]. CQL also attempts to address the issue of overestimation in Q-learning,
with the aim of improving robustness to off-policy distribution shift. Instead of trying to learn a
precise point estimate of the action-values, like DDQN, CQL modifies the learning objective to

lower bound the action-values,
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L00) = (B e[ Q05 )] ~ a0 [ Qs 0)]) + 5 B (QUs,0) — TQUs, )]

Conservative Q-learning modification Normal Q-learning loss

(3.1)

Here p is an arbitrary policy, and 7 is the empirical behaviour policy observed in the training
data. The first two terms respectively minimise Q-values while maximising them over actions taken
in the dataset. This encourages pessimism about unseen state-action pairs, while maintaining
predictions for seen states. The authors derive a variant of the above loss function by choosing

the p which maximises the current Q-iterate, subject to some regulariser R(u),

L'9) = mﬁme(G) + R(p).

As a regulariser, they choose the KL divergence against a prior uniform distribution p(a | s) =
Unif(a), ie. R(p) = —Dxr(p || p), the expectation over u collapses to a logsumexp over actions.

This algorithm, which we compare to as a baseline, is referred to as CQL(H),

1 ]Es’a)SIN'Dli(Q(S, a) —TQ(s, a))z] )

Ly = 6 : E5~D[IOgZeXp(Q(S>a)) - IEa~7i-5(a|s) [Q(s,a)]] + 2

An important aspect of CQL highlighted by the authors is gap-expansion; increasing the differ-
ence between Q-values for transitions the agent has seen and those which are out-of-distribution.
Gap-expansion discourages the selection of risky values due to Q-function overestimation, leading
the agent to stay in-distribution when facing distribution shift.

However, as with the DDQN, CQL is a training-time modification, so can require hyperpa-
rameter re-tuning to adapt to an existing workflow, on top of the additional tuning needed for the

hyperparameter (.

3.2 Conformal Prediction in RL

Since the resurgence of interest in conformal prediction precipitated by Lei and Wasserman [36]
in 2013, there has been a growing body of work applying it to the reinforcement learning setting
[43]. Most prior work elides issues with exchangeability by focussing on trajectory-level predictions
(see § 2.2.2). These works predominantly focus on the applications of trajectory prediction for

multi-agent settings and policy evaluation.

3.2.1 Multi-Agent RL

Substantial prior work applies conformal prediction to planning in multi-agent settings, using
conformal prediction to bound the likely position of other agents during a trajectory [40, 24, 65,
64, 35]. Conformal prediction gives hard guarantees about future position, but the flexibility of
the user-specified miscoverage rate o can mitigate over-pessimism and freezing. These methods
rely on planning from the initial state, recovering exchangeability. Lekeufack et al. [38] extend
the ideas of adaptive conformal inference to the trajectory-prediction problem. This approach is

capable of updating conformal bounds in an online manner during a trajectory, yielding improved
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performance in online decision-making. Sheng et al. [63] extends conformal prediction for trajec-
tory planning to the partially observable MDP setting, in which the full environment state is not
available to the agent.

CAMMARL [19] also operates in the multi-agent RL setting. Instead of trajectory-planning,
it uses conformal prediction to output a prediction set of actions another agent may take at each

time-step, which the ego agent can then incorporate into decision-making.

3.2.2 Policy evaluation

Another natural application of conformal prediction to RL is the use of conformal prediction to
give guarantees about the outcome of an agent operating in a known environment, known as pol-
icy evaluation. Dietterich and Hostetler [15] apply conformal prediction to the policy evaluation
problem, proposing an algorithm for whole-trajectory bounds on the reward an agent will likely
achieve during episodes in the nominal environment. Taufiq et al. [68] recover exchangeability
by considering contextual bandits. Their method, COPP, uses conformal prediction to give pre-
diction intervals in off-policy evaluation, to assess policies before deployment. Since there are no
trajectories in the contextual bandit setting, distribution shift due to off-policy methods reduces
to covariate shift, a problem addressed in the conformal prediction literature by Tibshirani et al.
[71]. Zhang, Shi, and Luo [82] similarly use conformal prediction to output prediction intervals in

the off-policy evaluation setting.

3.3 Summary

We identify two large gaps in the literature which conformal calibration addresses. Prior work
in RL addresses overoptimism via train-time modifications, necessitating the costly retraining
of agents from scratch. Earlier work applying conformal prediction to RL focusses primarily
on trajectory prediction and policy evaluation. Instead, conformal calibration is a post-training
stage which can be retrofitted to any value-based method. It uses conformal prediction to inform

action-selection at inference, inducing pessimism and therefore robustness.
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Chapter 4

Approach

We introduce conformal calibration for deep Q-learning. This method uses conformal prediction
to estimate a distribution-free lower bound on the Q-function of a DQN, demonstrably improving
robustness to distribution shift in multiple RL settings. Additionally, we discuss the theoretical
properties of this approach.

We introduce two variants, CC-Disc and CC-NN, which leverage discretisation and nearest
neighbour search respectively to localise conformal calibration, mitigating exchangeability viola-
tion. CC-D1sc is cheap at inference time, but requires state-space discretisation, limiting efficiency
in high-dimensional spaces. CC-NN uses nearest-neighbour search at test-time, requiring more

inference compute, but scaling to higher dimensional spaces.

4.1 Problem Setup and Notation

We consider a nominal MDP M = (S, A,r, P,~) with dataset D = {(s;, a;, i, 5)};. We train
a baseline DQN Qg on a training split D, and reserve D¢ for conformal calibration. We then
evaluate the calibrated and uncalibrated DQN on a test MDP M’ = (S, A, r, P', 7).

4.2 Assumptions of Conformal Prediction

The key assumption underpinning conformal prediction is exchangeability; permutations of train-
ing data are equally likely under some joint probability. A significant challenge in applying con-
formal prediction to RL is exchangeability violation, under which the typical coverage guarantees
of conformal prediction no longer hold. We identify two causes of exchangeability violation: time-

ordered trajectories and a non-stationary joint distribution during policy learning.

Time-ordering of trajectories. Transitions observed by an agent violate exchangeability since
they are ordered by time step. Permutations of a sequence of trajectories experienced by an agent
are not, in general, possible under a single consistent MDP. We propose three possible approaches

which mitigate this issue:

1. Rather than calibrating over individual transitions, considering full episode trajectories re-

covers exchangeability. This approach recovers exchangeability because the starting state
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distribution is fixed, so any ordering of trajectories is equally likely under the joint MDP
and policy. This enables conformal prediction at the trajectory-level, which can inform ac-
tion selection in the starting state. However, trajectory-level prediction cannot be naively

leveraged online during an episode without extensions [38].

2. State-action conditioning under a fixed MDP restores exchangeability, and can be consid-
ered a special case of a conformal prediction with a Venn taxonomy (see Ch. 4.6 of Vovk,
Gammerman, and Shafer [75]). Since transitions (s,a) — s’ are mediated by a consistent
transition kernel P(- | s,a), any set of transitions from a given state-action pair are i.i.d. and
hence exchangeable, regardless of the policy or time-ordering. To our knowledge, state-action
conditioning has not previously been applied to conformal prediction in RL. However, state-
action conditioning scales poorly, so requires relaxed assumptions about exchangeability to
be applied in high-dimensional or continuous state spaces. We discuss these relaxations in
§4.3.

3. Sampling from a fixed replay buffer during experience replay decorrelates transitions in a
batch, breaking time-ordering. We do not explore replay buffer-sampling in this work, but
possible methods could utilise conformal prediction when sampling from a replay buffer
combined with conformal distribution sampling [76], similar to robustness approaches like
EWOoK [77].

Online learning. During learning, the policy of an agent changes, altering the joint distribution
which generates transitions. Consider a low value state; the agent visits the state during early
exploration, but stops visiting it as learning proceeds. Replay buffers or trajectories including
this transition therefore violate exchangeability with new test points at inference, as they are not
consistent with a fixed MDP. Conformal prediction is thus most naturally applied to a fixed policy.

For these reasons, in this work we choose to apply conformal prediction in concert with state-

action conditioning to a frozen DQN.

4.3 Theoretical Framework

To induce conservatism, we wish to apply conformal prediction to lower bound the action-value
function of a learned DQN. We show that a Monte Carlo target, applied in the tabular setting, can
be used to derive a valid lower bound. Relaxing some assumptions, this theoretical underpinning

equips us with the core method of conformal calibration.

Setting. Consider a discounted MDP (S, A,r, P,7) with v € [0,1) and rewards almost surely
bounded as 74 € [Fmin, "max]- For a fixed stochastic target policy 7, define the discounted Monte

Carlo return from a start pair (s, a):

0
.
G = Zovtn, so that Vi 1= 720 < G as.
t=

Let ¢"(s,a) := IE[GSFS’Q)] and ¢*(s,a) = sup, ¢" (s, a).
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We introduce a Venn tazonomy by groups corresponding to state-action pairs (s,a) € S x A.
) y (s:a)

For each group g = (s,a) we assume access to n( o) i.i.d. calibration episodes Yl(s’a e Yl

distributed as G{® (episodes start from (s,a) and follow 7). Let Q(s,a) € R be any base
predictor. Define one-sided residuals ez(-s’a) = Q(s,a) — Yi(s’a), and let

5= be the k(, ,)-th order statistic, in ascending order, of {elmayie o E(s,a) i= [(n(s’aﬂ—l)(l—a)l
Set the groupwise (one-sided) conformal lower predictor

Lisa) = Q(s,a) — 69,

Lemma 1 (One-off conformal coverage). For every group g = (s,a), the split-conformal construc-
tion above satisfies
Pr [Ggrs’a) = L(s,a)] =>1—aq,

where the probability is over a fresh test episode from the same MDP as the calibration episodes.

Proof. By exchangeability within group g, the rank of the fresh residual eﬁjgj) = Q(s,a) — Gsrs’a)

among the set {e{™" ..., egf(’fz) e is uniformly distributed on {1, ..., n(s,a) + 1}. Hence
k s,a
Pr[e50) <560 5> 200 5 g,
Ms,a) +1

The event eﬁjg) < 009 is equivalent to Ggf’a) > Q(s,a) — 60 = L(s,q), yielding the claim. [

By consequence of Lemma 1, we have shown that we can condition conformal inference on
state-action pairs and derive a probabilistic lower bound on a learned Q-function. We now show
that the probabilistic lower bound from conformal inference can be converted into a true lower

bound using the Law of Total Expectation.

Theorem 1 (Conformal calibration lower bound on ¢™). Under the assumptions above, for every
tuple (s,a),
q‘n'(S’ a’) = (1 - 0[) L(s,a) + a V-

Proof. Fix g = (s,a) and abbreviate L = L, o), G = G Since G = Vinin a.5.,
E[G] = E[G - I[G > L]] + E[G - ZI[G < L]| > L- Pr[G > L] + Vuin-Pr[G < L].
Where 7 is the indicator function. By Lemma 1, Pr[G > L] > 1 — «a, hence
E[G] = (1—-a)L + aVyin.

But E[G] = ¢"(s,a) by definition. O

Corollary 1 (Lower bound on ¢*). For every (s,a) and any chosen target policy =,
q*(S, a) = qﬂ-(sa CL) = (1 - a) L(s,a) + aViin-
Proof. The first inequality is by optimality of ¢*. The second is Theorem 1. O
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Remark 1 (Choice of 7). To obtain a bound informative for q*, choose a strong policy (e.g.
m = Greedy(Q)); Corollary 1 then transfers the bound to g*.

Remark 2 (Induced policy m,5). Vinin and the scalar factor (1 — «) are constant across all state-
action pairs. Therefore the greedy policy mpp with respect to the derived lower bound is invariant
to their values. Setting Vinin = 0 and (1—a) = 1 gives the estimator Q(s,a) — 6%, which induces

the same policy as the valid lower bound derived above.

Remark 3 (Tightness and the role of «). The miscoverage level o introduces a fundamental
trade-off between the statistical confidence of the bound and its numerical value (tightness). The

parameter o influences the final bound (1 — ) L4 q) + aViin in two competing ways:

1. Quantile Selection: L) is determined by the k(s o) = [(n(s,a) + 1)(1 — a)|-th order
statistic of the residuals. As o — 0, k(s q) approaches n o) + 1, causing §(9) to approach
the mazimum observed residual. This makes Ly o) more conservative (smaller), tending
towards the minimum observed return, min; Yi(s’a). Conversely, a larger o leads to a less

conservative (larger) L q)-

2. Convexr Combination: The final bound is a convex combination of the empirical bound
Ls,q) and the worst-case bound Vigin. As a — 0, more weight is placed on L, qy. As o — 1,

the bound degenerates towards Vi, becoming maximally loose.

Consequently, choosing a very small o provides a high-confidence guarantee (e.g., 99.9%), but the
resulting lower bound may be overly pessimistic because L, o) will be very low. The optimal choice
of a must balance the desire for a high-probability statement with the need for a numerically useful

lower bound on the action-value.

In practice, we will relax the above assumptions in two ways. Theorem 1 uses a Monte Carlo
return, which in practice often suffers from high variance. Instead, we will employ a bootstrapped
TD error, for a simpler implementation and lower variance nonconformity scores. We empirically
evaluate the two approaches in § 5.3.3. Additionally, Theorem 1 assumes perfect conditioning on
(s,a), which is achievable in the tabular case. However, DQNs are designed to be applied to more
complex, continuous spaces. We propose multiple schemes for aggregating nearby states; This
aggregation violates exchangeability, introducing a gap between the expected and true coverage,

but this gap can be reduced by aggregating sufficiently “similar” states (see § 4.5.2).

4.4 State Space Aggregation

One relaxation we make to achieve state-action conditioning is aggregating nearby states. However,
this is challenging; the structure of state-action pair visitation is complex, and it varies between
policies learned from different random initialisations, shown in Figure 4.1. For low-dimensional
state spaces, we evaluate three schemes which enable the discretisation of the state-space into
distinct bins, essentially recovering the tabular setting. However, these approaches do not scale
to higher-dimensional spaces; instead there we leverage nearest-neighbour search to find nearby

points.
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Figure 4.1: States visited across 10,000 transitions in Cart Pole. Subplots show
policies trained from different random seeds—state-action visitation varies heav-
ily. Colouring indicates the TD nonconformity score e. The structure is complex,
and small movements in the state space can induce large changes in score. Hor-
izontal striations are due to the discrete time steps of the environment.

4.5 Conformal Calibration Framework

4.5.1 One-Sided Split Conformal Inference

In conformal prediction it is typical to use an absolute distance metric (eg. |9; — yi|), which
symmetrically grows the interval in response to underestimation and overestimation. However,
for the purpose of lower bounding a function we only need to penalise overestimation, so employ

the signed score ¢; to obtain a tighter bound (an empirical comparison is made in § 5.3.2). For

/
%

transition (s;, a;, 4, s}), we define

Ui = Qo(si,ai), yi=1i+ VH?XQG(SZG/)’ € = Ui — Yi-

For bin (s, a), compute the lower-tail conformal offset

550 = Quantile, ({€; : (si,a;) € bin(s,a)}), to = [(m + 17);1 — 04)17

where Quantile, is the ¢, quantile of the residuals. This corresponds to the one-sided predic-

tion interval

C(s,a) = [Qo(s,a) — 5(=a) ).

4.5.2 Coverage Gap in Continuous Spaces

In continuous state spaces, we aggregate nearby states into bins. In general this violates ex-
changeability, so the hard guarantees of conformal prediction no longer hold. However, as shown

by Barber et al. [7], the “coverage gap” due to exchangeability violation can be bounded

Coverage gap = (1—a) — Pr [yni1 € C (1) |,
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Coverage gap < Zz:i n Z?i(wz ) .
Where

e drv(-,-) is the total variation distance between distributions, the largest possible difference

between the probabilities that the two distributions assign to the same event.
o Z =(z1,...,2n41) is the full calibration dataset sequence with z; = (z;, y;).

© 7' = (21, %1, %041, Zit1s-- -, %n, %) Swaps the test point (w,.1,¥yn+1) With the i-th

training point (x;,y;).

e w; € [0, 1] are pre-specified weights on data points. Barber uses decaying w; for distribution

shift, but other work uses spatial weights (eg. 1 for nearest neighbours and 0 otherwise)[44].

Intuitively this results means that if states in a bin are similar, the coverage gap will be small.

We empirically evaluate coverage in the results section (see section § 5.2.6).

4.5.3 Uncalibrated regions

When a given region of the state space contains few or no calibration examples, 6(*% is inaccurate
or undefined. Instead, we choose a global fallback value. Recall that one benefit of Conservative
Q-Learning is gap-expansion; increasing the difference between the action-values of in- and out-
of-distribution actions. To induce gap-expansion we set the correction to the largest of all bins
with sufficient calibration data dfanback = max(s 4) ¢ (s,:0)  An illustration of the fallback behaviour
is given in Figure 4.2.

Similarly, when using nearest neighbour search to collect a calibration set in CC-NN, we would
like to identify outlier states which are too far from the calibration data for an accurate offset. In
this case, we choose a maximum distance for the k' neighbour, beyond which we revert to the
fallback measure Ogapack = Max(, q) §(s:a), Setting a maximum distance in a multi-dimensional
state-space across different coordinate systems (eg. angle, velocity, position) is challenging, so
instead of pre-specifying a distance we identify a coverage level de [0,1). Denoting the distance

from a state-action pair (s;,a;) to its k" neighbour as d; ., the max distance is then

Amax = Quantilerj({diﬁk}), (si,a;) € De.

4.6 CC-Disc: Discretised Conformal Calibration

We now begin describing specific instantiations of the conformal calibration framework. First we
outline CC-Disc, which uses state-space discretisation, calculated at calibration-time, to com-
pute offsets for each state-action bin. These are then retrieved at inference, giving a relatively

lightweight calibration approach.
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4.6.1 Partitioning the State-Action Space

To achieve state-action conditioning in continuous spaces we discretise the space. In principle, this
means using the calibration data to learn a discretisation function DISCRETISE(s,a) : S x A —
[K], where [K] = {1,2,..., K} is the index set of bins. We test three methods; uniform binning,

tile coding and a data-driven binary partition, as described in § 2.3.

4.6.2 Algorithm (CC-Disc)

We present a high-level overview of the steps taken in CC-Disc. Full pseudocode is provided in
Appendix A.

1. Train nominal agent. Learn QQyp on M using standard DQN.

2. Collect calibration data. Execute the greedy policy mg in M and store transitions
(s,a,r,s',a’) in a calibration buffer of size N.. We save examples in deques with a maximum
length greater than the minimum required calibration threshold, so that commonly-visited

states have larger calibration sets.

3. Discretise state-action space. Construct a DISCRETISE function using D¢. For example,
if binning, find the desired quantiles of the data to cover and evenly construct bins spanning

the interval.

4. Compute lower bounds. Compute residuals ¢; and corresponding offsets §(*:%) at level a.

If a bin has too few calibration examples, instead use the fallback value max; , §(sa),

5. Deploy with lower bounded policy. At test-time, in shifted environment M’, act greed-

ily with respect to the conformal lower bound

a= argmax[Qg(s, a) — 5(3’“)].
aceA

4.7 CC-NN: Nearest-Neighbour Conformal Calibration

Although state-space discretisation is an intuitive, lightweight approach to state-action condition-
ing, the number of required grid cells scales exponentially with dimensionality of the state-space,
leading to a high, inefficient memory cost. As an alternative, we propose a nearest-neighbour
variant, CC-NN. Where CC-DisC computes a discretisation function and offsets during offline
calibration step with a cheap lookup at inference, CC-NN constructs the calibration set and com-
putes (%) at inference-time, using nearest-neighbour search. This increases the inference cost of
calibration, but avoids the exponentially growing memory overhead of CC-Disc (see § 5.2.4 for

an evaluation of the incurred cost).

4.7.1 Offline Observation

In CC-NN, we still observe the agent in the nominal environment to build a buffer of previous
transitions. We then compute nonconformity scores for each point in the buffer. Lastly we compute

a maximum distance as described in § 4.5.3. Beyond this distance, we revert to the fallback value

Otallback-
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4.7.2 kNN Quantile at Test Time

At inference time, given state-action pair (s, a), retrieve the k-nearest neighbours and compute
the offset,

N = kNN(z(s, a); {z(si, a,;)}Dcal),

[(k+ DA = a)]
’ :

As described in § 2.3.1, there are numerous approaches to fast nearest-neighbour search, ranging

§0) = Quantileta{ei (i€ Nk}, to =

from exact methods like a k-d tree to approximate methods like HNSW. For the scale of problem
CC-NN is applied to, with a 10-dimensional state space and 10,000 transitions in the calibration

set, we found a k-d tree was sufficiently performant.

4.7.3 Algorithm (CC-NN)

We present a high-level overview of the steps taken in CC-NN. Note that the first two steps are
identical to CC-Disc. Full pseudocode is provided in Appendix A.

1. Train nominal agent. Learn QQyp on M using standard DQN.

2. Collect calibration data. Execute the greedy policy mg in M and store transitions

(s,a,r,s',a’) in a calibration buffer of size N..

3. Compute residuals. Compute residuals ¢; and corresponding offsets 6(5®) at level « for

Oth

each transition in buffer. Compute the maximum distance as the 90"" quantile distance of

the k" neighbour.

4. Compute correction at test-time. Given a state-action pair, find the k-nearest neigh-
bours, and compute offset §(*) at level cv. If the k" neighbour is further than the maximum

distance, use the fallback danpack. Act greedily with respect to the conformal lower bound

a = argmax|Qy(s,a) — 5(5*“)].
aeA

4.8 Summary

In this chapter we motivated and introduced conformal calibration, alongside two variant algo-
rithms CC-Disc and CC-NN. CC-Disc relies on an explicit state-space discretisation function
which is constructed after the observation phase. At inference, it only requires a cheap lookup to
fetch precomputed corrections. CC-NN, on the other hand, has no explicit discretisation scheme.
It constructs a calibration set per-decision at inference-time using nearest-neighbour search. An

illustration of the two methods is shown in Figure 4.2.
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Figure 4.2: A 2D view of the scores of CC-Disc and CC-NN in state-space.
The left plot shows state-action visits by a Cart Pole agent, coloured by the
nonconformity score. The CC-Disc grid boundaries are selected to cover 90%
of the observed transitions. Far from the distribution, the offset is the constant

value dgaback, inducing gap-expansion.
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Chapter 5

Results

In this section we describe the experimental setup of our empirical evaluations of CC-Disc and
CC-NN, and provide empirical results from conformal calibration. We split the results section
into two halves; one evaluates the performance impacts of calibration and compares to baselines,

and the other evaluates design choices and the effect of hyperparameters.

5.1 Experimental Setup

Environments. All environments use Gymnasium (an up-to-date fork of OpenAl Gym) running
locally on a Macbook M3 [13, 73]. We use Stable Baselines3 (SB3) for its vanilla DQN imple-
mentation, using a PyTorch backend. SB3-Zoo hyperparameters are used for all environments
(see Appendix B) [57, 56, 52]. We test on the 3 classic control environments with discrete action
spaces (as required by a DQN): Car tPole, Mountain Car and Acrobot. Additionally, for a slightly
larger state space we also test Lunar Lander. For all environments we use default settings. Qual-
itative testing suggested that the behaviour of conformal calibration was fairly consistent across
parameters in the same environment, so for simplicity we focus on one shift parameter to vary:
pole length in Cart Pole, gravity in Mountain Car, link length in Acrobot and gravity in Lunar

Lander.

Baselines. There are no standard baselines for comparing different robust RL baselines [49],
conformal calibration is a novel post-training approach, precluding direct comparison with prior
work. Instead, therefore, we compare to similar methods for addressing overestimation in DQNs;
DDQN and a Conservative Q-Learning DQN (CQL-DQN). We also evaluate the effect of combining
conformal calibration with DDQN and CQL-DQN agents. Implementations of Conservative Q-
Learning and DDQN are written in PyTorch and scaffolded around SB3’s DQN implementation
(code is available at https://github.com/foty-hub/msc_thesis). Each baseline was tuned on
the nominal environment to surpass a standard reward threshold, but no other robustness-aware

tuning was done. Reward thresholds are listed in Appendix B.3.

Discretisation. PyFixedReps is used for uniform binning and tile coding implementations [53].

Scikit-learn is used for its implementation of a k-d tree nearest neighbour algorithm [54] for fast
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nearest-neighbour search in CC-NN.

Evaluation Protocol. For each environment and algorithm, we train from scratch on a fixed
number of episodes, for 25 random seeds. To ensure that training dynamics don’t bias results, we
discard any agents which fail to meet a sufficient reward threshold on the training environment
(thresholds are listed in Appendix B). To test robustness to distribution shift we evaluate agent
mean reward over 250 episodes over a range of parameter values (eg. pole length in Cart Pole).
For final plots we report the interquartile mean, with 95% bootstrapped confidence intervals as
recommended by Agarwal et al. [2]. We use the same hyperparameters for conformal calibration
across environments (also listed in Appendix B), with the aim of demonstrating performance

without access to shifted environments against which to tune.

Score functions. We evaluate two score functions; the signed and unsigned scores €signed (4, y) =
9 —y and €ynsigned = |§ — Y| respectively. Intuitively, the unsigned score penalises both over- and
under-estimation, while the signed score only corrects for overestimation. By default we used the
signed score. We therefore expect the signed score to give a tighter lower bound and yield better
performance. Conformal prediction only leverages order statistics, so squared distances would

yield the same prediction sets as the L1 norm. Results are given in § 5.3.2.

Metrics. Evaluating the robustness of a policy is nuanced, and the Robust RL literature lacks
a single consistent metric [49]. Common choices include a worst-case return over an uncer-
tainty set of transition kernels Ry. = infpep Jp/ (), a worst-case performance ratio Raty. =
inf prep(Jp/(m)/Jp(7%,)) and conditional value at risk (CVaR), which measures the average re-
ward across episodes with a cumulative reward in the lowest quantiles of the distribution (eg.
average reward across the worst 5% of episodes). We argue that, since conformal calibration in-
cludes no explicit assumptions about an uncertainty set of transition kernels, these metrics are
arbitrary in our setting; we have no strong prior over possible scales of distribution shift, and the
range of the uncertainty set can be expanded or narrowed ad hoc to achieve essentially any desired
value. The worst-case performance ratio is also challenging to compute and reproduce; it requires
training optimal policies for every value of distribution shift evaluated, but it is not simple a priori
to evaluate whether a policy is optimal for a given value of shift.

Instead, we follow other work, such as Wang et al. [77], primarily presenting curves over a
range of shifts to give a nuanced view of the robustness of calibrated policies. We present a range
of values which sufficiently demonstrates the decay from a performant to suboptimal policy. As
a summary metric, we report a mean over this range of values, representing an uninformative
uniform prior.

The primary metric we consider is the per-seed ratio of the calibrated to uncalibrated mean
reward over 250 evaluation episodes. In our setting, this is a natural choice which enables the
calculation of meaningful confidence intervals; the robustness of a calibrated policy is dependent
on the robustness of the original learned policy (see Figure 5.1). For this reason, the variance of
calibrated performance is not a meaningful indicator of the average improvement due to calibration:
suppose the calibrated policy were consistently 10% more robust, but the uncalibrated policy

exhibited 20% variance across random seeds. Since the calibrated policy “inherits” the variance of
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uncalibrated policies across seeds, a plot with confidence intervals calculated across seeds would
obscure consistent improvement. This motivates a novel metric which averages the improvement
due to calibration on a per-seed basis. The expression for the improvement, at a single value of

the shift parameter, is given by

,Ufgl) — Tmin
r=—".
@ _ .

Hu T'min

Here ,ugi), ug) are the mean reward over evaluation episodes of the calibrated and uncalibrated
agents respectively. rpi, is the minimum possible reward for an episode; the subtraction gives a
meaningful ratio on environments with negative rewards (to see why, consider that -50 is a better
outcome than -100, but the ratio __1—%00 = 0.5, which would imply a performance degradation). We
then compute the IQM and 95% CI over seeds using 50,000 bootstrap samples. When reporting
a single figure to illustrate improvement due to calibration, we report this metric averaged across

a range of shift values.

5.2 Results: Performance Evaluation

We first report results illustrating the efficacy of conformal calibration. We explore the behaviour
of calibration on the fairly simple Cart Pole environment. Next, we extend the analysis to consider
other environments, showing improvements on the Mountain Car and Lunar Lander environments,

but no improvement on Acrobot. Lastly, we assess the computational overhead of each method.

5.2.1 Cart Pole

We first evaluate conformal calibration on the Cart Pole environment. Both algorithms increase
the average reward over the expected reward, with CC-Disc performing significantly better.
Results over multiple seeds in Figure 5.1 show that the calibrated policy is heavily dependent
on the uncalibrated policy. Additionally, the robustness of the underlying uncalibrated DQN
policy varies significantly with random seed. In some sense this is unsurprising; it is common for
the performance of Deep RL algorithms to vary strongly with random seed [2, 26, 25]. Although
conformal calibration is deterministic, the dependence on the underlying policy and environmental
stochasticity during the observation step means it inherits significant variance.

An interesting behaviour can be observed on seed 4 in Figure 5.1. The uncalibrated policy is
suboptimal on the nominal environment, but calibration “corrects” the policy. Both calibration
methods boost performance, with CC-NN achieving optimal reward on the nominal environment.
Due to the focus on distribution shift we do not focus on this behaviour further in this work,
but believe it warrants further investigation. Seed 4 also shows that the calibrated policy can
sometimes reduce robustness on specific parameter values.

Calculating the performance ratio and averaging across seeds shows that the robustness gains
of CC-Disc increase with greater distribution shift, shown in Figure 5.2. Averaging across shift
values, CC-D1sc achieves a 69.6 (29.5-250.1)% increase in reward, where the first number is the
interquartile mean and the range in brackets indicates an asymmetric bootstrapped 95% confidence
interval. CC-NN achieves a 7.4 (-1.3-37.2)% improvement.
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Figure 5.1: Plots of mean reward across DQN agents trained from different
random seeds. The vertical dotted line indicates the length of the pole in the
nominal environment. The variation in robustness is high, and calibrated poli-
cies depend strongly on underlying uncalibrated policies. In some cases, such
as the top-right subplot, calibration corrects a suboptimal policy, even on the
nominal environment.

Improvement Ratio (IQM)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Pole Length

—8— CC-Disc —8— CC-NN
Figure 5.2: On average, the CC-DisC agent achieves a 70% higher reward

across a range of pole lengths on Cart Pole. CC-NN achieves a 7% average
improvement.
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5.2.2 Comparison to Baselines

Comparing baselines, the most notable finding is that the CQL-DQN significantly boosts robust-
ness compared to any other methods. In some respects this is unsurprising—CQL-DQN leverages
significant additional computation at train-time, and explicitly introduces conservatism as a train-
ing objective. In addition, CQL-DQN required twice as many training steps to reliably achieve
optimal performance on the nominal environment, so we might expect that the agent encountered
more state-action pairs and learned an accurate Q-function across a broader range of states than
the unmodified DQN. We also find that the DDQN does not improve robustness in the face of
domain shift, and in fact is less robust than the vanilla DQN.

Comparing uncalibrated to calibrated policies, however, we find that calibration, at least
marginally, improves robustness of all three methods, even improving the CQL-DQN on extreme

values of the pole length.

DQN DDQN CQL-DQN
500 - ; {i---¢
400 -
300 -
200 -
100
04 ;
0 1 2 3 0 1 2 3 0 1 2 3 a4 5

length length length

Uncalibrated @ —@— CC-DISC  —@— CC-NN

Figure 5.3: Median reward across 25 seeds for each baseline, with and without
conformal calibration. CQL-DQN is significantly more robust than DQN and
DDQN, and hence is evaluated over a wider range of pole lengths.

5.2.3 Classic Control and Lunar Lander

To assess whether the findings on Cart Pole are consistent across environments, we evaluate
calibrated agents on the Acrobot and Mountain Car environments. On Mountain Car CC-Disc
improves mean reward by 22.6 (2.9-52.7)%, and CC-NN 7.5 (0.7-24.2)%. On Mountain Car the
goal is to pilot drive a vehicle out of a valley, up a hill to a goal. Therefore it is encouraging that
calibration mostly improves the policy for higher levels of gravity, for which the environment is
more difficult to solve.

In the Acrobot environment, calibration confers no benefits. CC-Disc achieves 0.5 (-0.6-1.7)%
improvement. CC-NN slightly reduces robustness, with a change of -5.7 (-9.3—2.4)%. We explore
this further in § 5.2.5.

Evaluating CC-Disc for a single seed on the Lunar Lander environment, we observe the
consequences of the “curse of dimensionality,” as shown in Figure 5.5. With an overly coarse
grid the discrete algorithm over-generalises. Robustness improves as the grid becomes more fine.

However, this leads to large grids containing millions of features, most of which are never visited
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Figure 5.4: Improvement ratios for Mountain Car (left) and Acrobot (right).
While the Mountain Car environment benefits as gravity increases, Acrobot
sees no benefit over a range of link lengths, with CC-NN slightly reducing
robustness.

during calibration, leading to a large, inefficient memory overhead.

This motivates the use of CC-NN, which leverages a nearest-neighbours search instead of an
explicit state-space discretisation. This method achieves an average improvement of 11 (-13-75)%
over the DQN baseline, shown in Figure 5.6.

4 bins per dimension 6 bins per dimension 8 bins per dimension

262k features 6.72m features 67.1m features
1

200

100

Mean Return

0

-12,5 -100 -75 -50 -25 00 -125 -100 -75 -50 -25 0.0 -125 -100 -7.5 -50 -25 0.0
gravity gravity gravity

Uncalibrated —e— CC-DISC

Figure 5.5: Comparing a fixed seed, increasingly fine grids improve the perfor-
mance of CC-DIsc on the Lunar Lander environment. However, since Lunar
Lander has an 8-dimensional state space, the required number of grid spaces,
and hence memory overhead, explodes to unreasonably large counts.

5.2.4 Computational Overhead

As inference-time modifications to action selection, both CC-Disc and CC-NN incur overhead
during action selection. To evaluate this, we run each method for 50 episodes and profile the
time spent in action selection, with results shown in Figure 5.7. On average, an unmodified
DQN-—which has 67,331-69,124 active parameters at inference depending on the input state-space
dimension—took 33.8 us to perform action selection. By comparison, CC-Disc with 6 bins per
dim takes 41.4 us, a 22% increase. This overhead is due to the additional steps of state-action
discretisation and indexing into the precomputed offset array. Note that, as discussed in § 5.2.3,
the bin count grows exponentially with the state-space dimension, so the memory overhead of

CC-Disc grows even though the compute overhead is stable.
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Figure 5.6: CC-NN improvement ratio on Lunar Lander, evaluated over 25
seeds, with 95% confidence intervals per-value. Across all parameter values, the
average improvement is 10.8%.

CC-NN, by comparison, incurs significant overhead, taking between 150% to 380% longer for
action selection. This is because it constructs a calibration set at inference-time by querying a k-d

tree, which regresses to a brute-force search as the dimensionality of the state space increases [5].
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Figure 5.7: Inference compute cost of action selection, comparing a vanilla DQN
to calibrated versions using CC-Disc and CC-NN. Tick labels indicate the
dimensionality of the state space for each environment. CC-Disc adds a 22%
overhead. CC-NN increases inference cost significantly, scaling with state-space
dimensionality.

5.2.5 Limited effect on the Acrobot environment

Evaluating all the baselines and calibration algorithms on the Acrobot environment shows that
none achieve improved robustness in the face of distribution shift (see Figure 5.8). This suggests
that the lack of improved robustness is consistent—mno amount of in-distribution conservatism and
out-of-distribution scepticism increases robustness. One possible explanation is that the Acrobot

environment is based on a double-pendulum, a chaotic physical system; small changes to the
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Figure 5.8: On the Acrobot environment, none of the calibration methods or
baselines induce significantly more robust policies.

dynamics induce large changes to the trajectories observed. In this case, small distribution shifts
move the policy far from the training support, where a constant offset d¢ajipack across actions fails
to modify action-selection. Due to time constraints we were unable to validate this hypothesis, but
believe it warrants further research; understanding why calibration fails on Acrobot could yield a

deeper understanding of how it induces robustness.

5.2.6 Coverage

To adapt state-action conditioning to continuous state spaces we relaxed the exchangeability as-
sumption, aggregating nearby states (see § 4.3). In theory this exchangeability violation nullifies
the coverage guarantees of conformal prediction. To assess the empirical impact of this relaxation,
we measure the coverage gap of a calibrated agent on Cart Pole by the following procedure; we
apply conformal calibration, then observe an agent on the nominal environment and track how of-
ten the observed TD target r; + v maxy Qg(st+1,a’) is above the calibrated value function (which
should be a lower bound with probability 1 — «). We run the observation stage of conformal
calibration for ten million transitions to ensure that almost all grid cells visited have sufficient cal-
ibration data. In Figure 5.9 we show an occupancy-weighted histogram where one count represents
a single visit to a state-action pair, run over 15 random seeds with o = 0.1.

On average, coverage holds roughly, with an average of 89.7% empirical coverage. Most grid
spaces cluster around the specified coverage rate, although we see heavier tails than the expected
Beta distribution (discussed in § 2.2.3). A small number of grid spaces are severely undercovered,
which may be due to grid spaces spanning the score-heterogeneous regions which can be seen in
Figure 4.2. It is worth noting that in typical conformal calibration, with the 10,000 calibration
transitions used as standard in this thesis, the empirical coverage rate is higher than specified,

since more grid spaces are covered by the fallback value.

5.3 Results: Design Choices and Hyperparameters

We now present a series of evaluations validating the design choices of the CC-Disc and CC-NN
algorithms. We also test the influence of various hyperparameters, illustrating considerations such

as the generalisation-vs-locality tradeoff in state-space aggregation.
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Figure 5.9: Occupancy-weighted histogram of coverage over a uniform grid CC-
Disc agent on Cart Pole. The small orange segment with 100% coverage indi-
cates grid spaces with insufficient calibration data which instead use the fallback
correction. CC-Disc typically uses variable length calibration sets with a min-
imum threshold, but we fix them to 250 examples for this experiment.

5.3.1 Discretisation Methods

The defining feature of CC-DIisc is state-space discretisation, which enables the application of
conformal prediction to continuous state-spaces. State-space discretisation is challenging—even on
the same environment, different policies can have radically different state-space visitation patterns,
as shown in Figure 4.1. The simplest aggregation scheme is a uniform grid, but this is deeply
inefficient; In the Lunar Lander environment a uniform grid has 6.7 million features with only 6
bins per dimension. Given that we typically observe only 10,000 transitions during calibration,
almost all of these grid cells are never visited and revert to the constant fallback value.

We would like to find more efficient schemes for state-space discretisation. We explore the use
of tile-coding and a data-driven binary partition, as described in § 2.3. The results on Acrobot,
Cartpole and Mountain Car are shown in Figure 5.10. For each discretisation method, we vary

the following quantities:

e Grid: bins per state dimension
e Tile coding: bins per state dimension, and number of offset grids
e Tree/Binary Partition: maximum depth, the minimum numbers of items per leaf, and the

splitting criterion (impurity-based or median).

On average, a simple uniform grid appears to be the most effective, achieving competitive
performance on Mountain Car, the highest performance on Cart Pole, and no negative effect
on Acrobot. The tree (binary partition) method is the least effective approach, likely due to a
propensity to overfit to data, even with a small number of leaves. The tree harms robustness on
Acrobot and Mountaincar, with only moderate improvements on Cart Pole, and higher sensitivity
to hyperparameter choice than other methods. Tile coding achieves more reliable performance
than the tree, but does not substantially improve on the uniform grid.

One reason that coarse grids may outperform fine grids is that broad grid spaces generalise

to unseen state-action pairs, where high resolution approaches revert to the fallback value in the
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Figure 5.10: Comparison of discretisation methods. Colours indicate the type
of discretisation (grid, tile coding, tree), and darker hues indicate more finely-
discretised grid spaces.

face of distribution shift. This appears to be a feature of the environment and learned Q-function;
the more homogeneous residuals are in state-space, the more a coarse grid will enable useful
generalisation.

One interesting note from this experiment is that, on Cart Pole, a four-bin grid is the most
performant solution, achieving a 101 (27-224)% performance improvement over the uncalibrated
DQN baseline. This is higher than the 70% improvement we achieve using the default 6 bins per
dimension. Per-environment tuning of conformal calibration is a promising way to further boost
robustness per-environment, although we prioritise default settings to demonstrate the applicabil-

ity of conformal calibration without significant tuning.

5.3.2 Score function comparison

As discussed in § 4.5.1, we use a signed distance

score to lower bound the Q-function without

widening prediction sets where the Q-function 2 0] i

is an underestimate. To validate this decision, C:: 23 i

we compare signed and unsigned scores using % 20 i

CC-Disc on Cart Pole. On average the signed g 151 i

score exhibits a higher improvement, although él_o. :

there is significant overlap in confidence inter- £ 054, i , ; ; ; ;
vals, as shown in Figure 5.11. Given the theo- 00 03 Lo Po|e]|:esngth 20 23 >0
retical motivation, we believe the signed score o Ve O 1V~ Vel

is preferable, but further experiments to certify

this with high statistical significance would be Figure 5.11: Comparing score functions on Cart
valuable. Pole, the signed score is better on average, but
confidence intervals overlap significantly.
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5.3.3 Monte Carlo vs TD Return

As discussed in § 4.3, we relax the assumptions of Theorem 1 and use a TD return in the calculation
of the nonconformity score €. This simplifies the implementation, but the approximation error due
to bootstrapping means we can no longer guarantee that the calibrated policy 71 is induced with
respect to a valid lower bound. A comparison of the interquartile mean improvement shows the use
of a TD return has no negative impact on performance, shown in Figure 5.12. On the Mountain
Car, Acrobot and Cart Pole environments, both targets yield similar results. On Lunar Lander
the Monte Carlo return harms robustness—this may be because Lunar Lander is a more complex
environment with longer episodes, leading to higher variance Monte Carlo returns, and CC-NN

is more vulnerable to the variance in residuals due to the small, fixed-size calibration set.

2.5 1

N
o
!

1.67 164

=
8}
)

Improvement Ratio (IQM)
.
=)

o
n
!

0.0 -
Acrobot Mountain Car Cart Pole Lunar Lander

m MC m 1D

Figure 5.12: Comparison of a Monte Carlo vs TD target for the nonconformity
score, on all four environments. The TD target yields consistent gains across
environments, where Monte Carlo falters on Lunar Lander. Evaluated using
CC-Disc for the Acrobot, Mountain Car and Cart Pole environments, and
CC-NN for Lunar Lander.

5.3.4 Effect of o

One of the key hyperparameters in conformal prediction is «, the miscoverage rate. Higher values
« give tighter prediction intervals. In conformal calibration, however, the value of o has a limited
effect on the robustness improvements, shown in Figure 5.13. The exception is a peak at o = 0.01.
Possible causes for this low sensitivity could be near-uniform residuals within bins or limited
calibration examples, so that different values of o select for similar values of the correction §(*).

Due to time constraints we were not able to explore this behaviour more deeply.

5.3.5 Test-time adaptation

One natural approach to distribution shift is to keep learning by fine-tuning the agent to the test

environment. Relatedly, we might ask whether conformal calibration can incorporate information
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Figure 5.13: Mean improvement ratio on Cart Pole for different values of the
miscoverage rate «. Except for a sharp peak at a = 0.01, the choice of o does
not significantly alter the robustness boost of calibration.

from the test-environment to improve robustness. To investigate this, we test the update proposed

by Angelopoulos, Barber, and Bates [4] in CC-Disc, updating the pre-computed corrections in
response to test-time observations

521 = 0 i (Zlre + 7 max Qo(s',a') < Qo(s,0) = 0] — ).

Testing on Cart Pole and Acrobot demonstrates no clear benefit, as shown in Figure 5.14.
The variance of the test-time method appears to be significantly higher, especially for extreme
distribution shift on the Acrobot environment. The test-time method does outperform the uncal-
ibrated policy on values close to the nominal environment on Acrobot, which may warrant further
research. This is a surprising result; information from the test environment ought to be valuable
in devising a more effective policy. A possible explanation is that bootstrapping from unreliable
out-of-distribution action-value estimates could lead to spurious updates, but testing with a Monte
Carlo return showed that it harmed performance of the test-time method significantly, reducing
Cart Pole mean improvement from 70% to 42%.
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Figure 5.14: Improvement ratios with and without test-time adaptation, with
test-time learning rate n = 0.01.
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5.4 Summary

In this chapter we presented empirical results on a mixture of Gymnasium environments including
classic control settings and Lunar Lander [73, 13]. We found that, using standard parameters
across all environments, CC-DI1sC boosts robustness on the Cart Pole and Mountain Car environ-
ments. We also found that calibration is amenable to combination with conservative approaches
like DDQN and CQL-DQN, benefitting robustness. Evaluation on Acrobot shows that no pro-
conservatism method reliably boosts robustness. An extension to the Lunar Lander environment,
with a larger state-space, demonstrates the shortcomings of the state-space discretisation approach
of CC-Disc, motivating the use of CC-NN, which achieves an 11% improvement. However, anal-
ysis of compute overhead shows while CC-DI1sc is fairly cheap at inference, CC-NN is expensive,
taking up to 4 times longer on larger state-spaces.

Empirical analysis of the coverage and TD return show that the relaxations we make to the
theoretical lower bound derived in Theorem 1 do not significantly affect validity. Assessment
of different discretisation approaches for CC-Disc suggests that a simple uniform grid is the
most effective choice on the low-dimensional environments tested. Lastly, an exploration of test-
time adaptation using adaptive correction scaling shows no clear benefits compared to static

pre-computed corrections.
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Chapter 6

Conclusion

In this final chapter, we highlight limitations of the work presented and worthwhile avenues for

future work, as well as reflecting on the content presented in this thesis.

6.1 Limitations

As a novel method, conformal calibration offers myriad directions for improvement or exploration.
In this work, we priotised empirical evaluation and a small number of environments, evaluating
across many random seeds to establish that results were not due to random chance. However, as
a result there are significant limitations we were unable to address, including;:

Dimensionality. Conformal calibration was only tested on fairly small environments with
fewer than ten dimensions. Real-world agents have to navigate significantly larger, more complex
environments. Although this work demonstrates the impact of calibration on small spaces, it may
require significant modifications to scale effectively to these larger spaces.

Theoretical grounding. The gains due to conformal calibration are inconsistent across
environments. We see substantial gains on Cart Pole, moderate gains on Lunar Lander and
Mountain Car, and no benefit on Acrobot. A more principled understanding of how calibration
benefits robustness could boost its reliability on more challenging environments.

Scope of compatible methods. This study focused on value-based methods with discrete
action spaces. The results do not yet extend directly to actor—critic or continuous-action settings
without additional design.

Hyperparameters and heuristics. Performance is sensitive to design choices such as the
miscoverage rate «, discretisation density or k in kNN, distance metrics, and thresholds for out-of-
distribution detection. These choices affect both robustness and nominal performance, and poor
tuning can reduce the benefits of calibration.

Computational and memory cost. CC-Disc is efficient at inference but memory overhead
scales poorly with state dimensionality, while CC-NN scales better with memory but incurs ad-
ditional lookup time and memory usage. Neither variant is yet optimised for demanding real-time

applications.
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6.2 Future Work

Adaptive calibration. We found that test-time adaptation yielded no substantial benefit, but
this was an unintuitive result, and may be due to the specific choice of adaptation mechanism.
Therefore we feel this is an avenue deserving of significantly more research.

Scaling to richer state spaces. More expressive ways of capturing locality could extend
calibration to higher dimensions. Learned embeddings, approximate nearest neighbour search,
or discretisations based on clustering and representation learning may provide more efficient and
flexible alternatives. At present, the method has only been evaluated on relatively small and
simple environments, so assessing its effectiveness in larger, more complex domains remains an
important next step.

Diagnostics and automation. Developing tools to assess whether calibration is likely to help
in a given environment—for example, based on state coverage or sensitivity to distribution shift—
could make the method more practical. In a similar vein, calibration improves the robustness of
some policies more than others depending on random seed. A deeper theoretical understanding
could identify which aspects of an agent’s policy make it amenable to calibration.

Additional baselines. We demonstrate that calibration benefits DDQN and Conservative
Q-Learning. Further testing with other robustness approaches such as domain randomisation
could clarify whether calibration is broadly complementary to other methods, and contribute
more generally to a “recipe” for robust agents.

Application to nominal environment. As mentioned in § 5.2.1, calibration can occasionally
“correct” suboptimal policies on the nominal environment. This effect is beyond the scope of this

work, but may warrant further research.

6.3 Conclusion

This thesis introduced conformal calibration, a post-hoc method for improving the robustness
of Deep Q-Learning agents under distribution shift. By adapting conformal prediction to the
reinforcement learning setting, we develop a principled way to lower bound the Q-function of a
trained DQN without retraining the underlying policy. Two variants are proposed: CC-Disc,
which discretises the state—action space, and CC-NN, which applies nearest-neighbour search
across the state-space. Both methods demonstrated measurable gains in robustness on classic
control benchmarks and Lunar Lander, with CC-DIisc excelling in low-dimensional settings and
CC-NN providing scalability to richer state spaces.

The theoretical framework grounded these methods in one-sided conformal inference, while
empirical results confirmed that calibrated pessimism can mitigate overestimation and improve
decision-time reliability. Importantly, these gains were achieved without the computational cost of
retraining or extensive hyperparameter search, highlighting post-hoc calibration as a lightweight
complement to existing methods such as Double DQN or Conservative Q-Learning.

More broadly, this thesis contributes to an alternative avenue; that reinforcement learning ob-
jectives need not be engineered solely through training-time modifications. Instead, post-training
calibration offers a practical alternative for retrofitting an existing agent. Recent years have

brought the advent of foundation models, large-scale training and compute-intensive meta-learning
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approaches. In contrast to the typical tabula rasa RL paradigm, the ability to tune pre-trained
generalist policies may become increasingly important in effective deployment. We hope this work

is a small step in this direction.

44



Bibliography

[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An Optimistic Perspective on
Offtine Reinforcement Learning. 2020. arXiv: 1907 .04543 [cs.LG]. URL: https://arxiv.
org/abs/1907.04543 (cit. on p. 16).

[2] Rishabh Agarwal et al. “Deep Reinforcement Learning at the Edge of the Statistical Precipice”.
In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34.
Curran Associates, Inc., 2021, pp. 29304-29320. URL: https://proceedings . neurips.
cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eedbe —Paper . pdf
(cit. on pp. 2, 30, 31, 57).

[3] Anastasios N. Angelopoulos and Stephen Bates. A Gentle Introduction to Conformal Predic-

tion and Distribution-Free Uncertainty Quantification. 2022. arXiv: 2107 .07511 [cs.LG].
URL: https://arxiv.org/abs/2107.07511 (cit. on p. 10).

[4] Anastasios Nikolas Angelopoulos, Rina Barber, and Stephen Bates. “Online conformal pre-
diction with decaying step sizes”. In: Proceedings of the /1st International Conference on
Machine Learning. Ed. by Ruslan Salakhutdinov et al. Vol. 235. Proceedings of Machine
Learning Research. PMLR, 21-27 Jul 2024, pp. 1616-1630. URL: https://proceedings.
mlr.press/v235/angelopoulos24a.html (cit. on pp. 12, 40).

[5] Sunil Arya, David M. Mount, and Onuttom Narayan. “Accounting for boundary effects in
nearest neighbor searching”. In: Proceedings of the Eleventh Annual Symposium on Compu-
tational Geometry. SCG ’95. Vancouver, British Columbia, Canada: Association for Com-
puting Machinery, 1995, pp. 336-344. 1sBN: 0897917243. pOI: 10 .1145/220279 . 220315.
URL: https://doi.org/10.1145/220279.220315 (cit. on p. 35).

[6) Leemon C. Baird. “Residual Algorithms: Reinforcement Learning with Function Approxi-
mation”. In: Proceedings of the Twelfth International Conference on Machine Learning. Ed.
by Armand Prieditis and Stuart J. Russell. San Francisco, CA: Morgan Kaufmann, 1995,
pp. 30-37. DOI: 10.1016/B978-1-55860-377-6.50013-X (cit. on p. 16).

[7] Rina Barber et al. “Conformal prediction beyond exchangeability”. In: The Annals of Statis-
tics 51 (Apr. 2023). DOI: 10.1214/23-A0S2276 (cit. on p. 24).

[8] M. G. Bellemare et al. “The Arcade Learning Environment: An Evaluation Platform for
General Agents”. In: Journal of Artificial Intelligence Research 47 (June 2013), pp. 253-279.
ISSN: 1076-9757. DOI: 10.1613/jair.3912. URL: http://dx.doi.org/10.1613/jair.3912
(cit. on p. 6).

45


https://arxiv.org/abs/1907.04543
https://arxiv.org/abs/1907.04543
https://arxiv.org/abs/1907.04543
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://arxiv.org/abs/2107.07511
https://arxiv.org/abs/2107.07511
https://proceedings.mlr.press/v235/angelopoulos24a.html
https://proceedings.mlr.press/v235/angelopoulos24a.html
https://doi.org/10.1145/220279.220315
https://doi.org/10.1145/220279.220315
https://doi.org/10.1016/B978-1-55860-377-6.50013-X
https://doi.org/10.1214/23-AOS2276
https://doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Marc G. Bellemare, Will Dabney, and Rémi Munos. “A Distributional Perspective on Re-
inforcement Learning”. In: Proceedings of the 34th International Conference on Machine
Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learn-
ing Research. PMLR, June 2017, pp. 449-458. URL: https://proceedings .mlr.press/
v70/bellemarel7a.html (cit. on p. 12).

Richard Bellman. “A Markovian Decision Process”. In: Journal of Mathematics and Me-
chanics 6.5 (1957), pp. 679-684. 1sSN: 00959057, 19435274. URL: http://wuw.jstor.org/
stable/24900506 (cit. on p. 5).

Jon Louis Bentley. “Multidimensional binary search trees used for associative searching”.
In: Commun. ACM 18.9 (Sept. 1975), pp. 509-517. 1ssN: 0001-0782. DOI: 10.1145/361002.
361007. URL: https://doi.org/10.1145/361002.361007 (cit. on p. 14).

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic programming. Vol. 3. Opti-
mization and neural computation series. Athena Scientific, 1996, pp. I-XIII, 1-491. 1SBN:
1886529108 (cit. on p. 5).

Greg Brockman et al. “OpenAl Gym”. In: (June 2016). DOI: 10.48550/arXiv.1606.01540
(cit. on pp. 29, 41).

Will Dabney et al. “Distributional reinforcement learning with quantile regression”. In: Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth In-
novative Applications of Artificial Intelligence Conference and Fighth AAAI Symposium on
Educational Advances in Artificial Intelligence. AAAT18/TAAT'18/EAAT’'18. New Orleans,
Louisiana, USA: AAAT Press, 2018. 1SBN: 978-1-57735-800-8 (cit. on p. 12).

Thomas G. Dietterich and Jesse Hostetler. Conformal Prediction Intervals for Markov De-
cision Process Trajectories. 2022. arXiv: 2206.04860 [cs.LG]. URL: https://arxiv.org/
abs/2206.04860 (cit. on p. 19).

Scott Fujimoto, David Meger, and Doina Precup. “Off-Policy Deep Reinforcement Learn-
ing without Exploration”. In: Proceedings of the 36th International Conference on Ma-
chine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceed-
ings of Machine Learning Research. PMLR, Sept. 2019, pp. 2052-2062. URL: https://
proceedings.mlr.press/v97/fujimotol19a.html (cit. on p. 16).

A. Gammerman, V. Vovk, and V. Vapnik. “Learning by transduction”. In: Proceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelligence. UAT’98. Madison, Wis-
consin: Morgan Kaufmann Publishers Inc., 1998, pp. 148-155. 1SBN: 155860555X (cit. on
p. 8).

Isaac Gibbs and Emmanuel J. Candes. “Adaptive conformal inference under distribution
shift”. In: Proceedings of the 35th International Conference on Neural Information Processing
Systems. NIPS ’21. Red Hook, NY, USA: Curran Associates Inc., 2021. 1SBN: 9781713845393
(cit. on pp. 12, 14).

Nikunj Gupta, Somjit Nath, and Samira Ebrahimi Kahou. CAMMARL: Conformal Action
Modeling in Multi Agent Reinforcement Learning. 2024. arXiv: 2306.11128 [cs.LG]. URL:
https://arxiv.org/abs/2306.11128 (cit. on p. 19).

46


https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v70/bellemare17a.html
http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.48550/arXiv.1606.01540
https://arxiv.org/abs/2206.04860
https://arxiv.org/abs/2206.04860
https://arxiv.org/abs/2206.04860
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html
https://arxiv.org/abs/2306.11128
https://arxiv.org/abs/2306.11128

[20]

[21]

[31]

[32]

[33]

Danijar Hafner et al. Mastering Diverse Domains through World Models. 2024. arXiv: 2301.
04104 [cs.AI]. URL: https://arxiv.org/abs/2301.04104 (cit. on p. 56).

Hado Hasselt. “Double Q-learning”. In: Advances in Neural Information Processing Systems.
Ed. by J. Lafferty et al. Vol. 23. Curran Associates, Inc., 2010. URL: https://proceedings.
neurips . cc/paper _files/paper/2010/file/091d584fced301b442654dd8c23b3fc9 -
Paper.pdf (cit. on pp. 1, 17).

Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double
Q-learning. 2015. arXiv: 1509.06461 [cs.LG]. URL: https://arxiv.org/abs/1509.06461
(cit. on pp. 1, 16, 17).

Hado van Hasselt et al. Deep Reinforcement Learning and the Deadly Triad. 2018. arXiv:
1812.02648 [cs.AI]. URL: https://arxiv.org/abs/1812.02648 (cit. on pp. 1, 16).

Sihong He et al. Robust Multi-Agent Reinforcement Learning with State Uncertainty. 2023.
arXiv: 2307.16212 [cs.LG]. URL: https://arxiv.org/abs/2307.16212 (cit. on p. 18).

Peter Henderson et al. Deep Reinforcement Learning that Matters. 2019. arXiv: 1709.06560
[cs.LG]. URL: https://arxiv.org/abs/1709.06560 (cit. on pp. 2, 31).

Riashat Islam et al. Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for
Continuous Control. 2017. arXiv: 1708.04133 [cs.LG]. URL: https://arxiv.org/abs/
1708.04133 (cit. on pp. 2, 31).

Garud Iyengar. “Robust Dynamic Programming”. In: Math. Oper. Res. 30 (May 2005),
pp. 257-280. DOI: 10.1287/moor.1040.0129 (cit. on p. 2).

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A Survey. 1996.
arXiv: ¢s/9605103 [cs.AI]. URL: https://arxiv.org/abs/cs/9605103 (cit. on p. 4).

Dmitry Kalashnikov et al. QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based
Robotic Manipulation. 2018. arXiv: 1806.10293 [cs.LG]. URL: https://arxiv.org/abs/
1806.10293 (cit. on p. 1).

Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: (2009),
pp. 32-33. URL: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR. pdf
(cit. on p. 10).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with deep
convolutional neural networks”. In: Commaun. ACM 60.6 (May 2017), pp. 84-90. 1sSN: 0001-
0782. DOIL: 10.1145/3065386. URL: https://doi.org/10.1145/3065386 (cit. on p. 1).

Aviral Kumar et al. “Conservative Q-Learning for Offline Reinforcement Learning”. In:
Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33.
Curran Associates, Inc., 2020, pp. 1179-1191. URL: https://proceedings.neurips.cc/
paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052~Paper . pdf (cit.
on pp. 1, 17).

Aviral Kumar et al. “Stabilizing off-policy Q-learning via bootstrapping error reduction”. In:
Proceedings of the 33rd International Conference on Neural Information Processing Systems.
Red Hook, NY, USA: Curran Associates Inc., 2019 (cit. on p. 16).

47


https://arxiv.org/abs/2301.04104
https://arxiv.org/abs/2301.04104
https://arxiv.org/abs/2301.04104
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1812.02648
https://arxiv.org/abs/1812.02648
https://arxiv.org/abs/2307.16212
https://arxiv.org/abs/2307.16212
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1708.04133
https://arxiv.org/abs/1708.04133
https://arxiv.org/abs/1708.04133
https://doi.org/10.1287/moor.1040.0129
https://arxiv.org/abs/cs/9605103
https://arxiv.org/abs/cs/9605103
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf

[37]

[38]

[39]

[45]

Yann LeCun et al. “Gradient-Based Learning Applied to Document Recognition”. In: Pro-
ceedings of the IEEE. Vol. 86. 11. 1998, pp. 2278-2324. URL: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.42.7665 (cit. on p. 10).

Brian Lee and Nikolai Matni. “Single Trajectory Conformal Prediction”. In: 2024 IEEE 63rd
Conference on Decision and Control (CDC). 2024, pp. 3019-3024. DOI: 10.1109/CDC56724.
2024.10886644 (cit. on p. 18).

Jing Lei and Larry Wasserman. “Distribution-free Prediction Bands for Non-parametric
Regression”. In: Journal of the Royal Statistical Society Series B: Statistical Methodology
76.1 (July 2013), pp. 71-96. 1sSN: 1369-7412. DOI: 10.1111/rssb.12021. eprint: https://
academic.oup.com/jrsssb/article-pdf/76/1/71/49514328/ jrsssb\_76\_1\_71.pdf.
URL: https://doi.org/10.1111/rssb.12021 (cit. on pp. 9, 18).

Jing Lei et al. Distribution-Free Predictive Inference For Regression. 2017. arXiv: 1604 .
04173 [stat.ME]. URL: https://arxiv.org/abs/1604.04173 (cit. on p. 10).

Jordan Lekeufack et al. Conformal Decision Theory: Safe Autonomous Decisions from Im-
perfect Predictions. 2024. arXiv: 2310.05921 [stat.ML]. URL: https://arxiv.org/abs/
2310.05921 (cit. on pp. 18, 21).

Sergey Levine. Reinforcement Learning in the Age of Foundation Models. Keynote talk, Re-
inforcement Learning Conference (RLC 2024). Keynote given Aug 10, 2024; video recording
available on YouTube. University of Massachusetts Amherst, Amherst, MA, USA: Reinforce-
ment Learning Conference (RLC), Aug. 2024. URL: https://youtu.be/Az5BoT71CYo?si=
S80113Qb40kpDir0&t=1272 (Cit. on p. 17).

Lars Lindemann et al. Safe Planning in Dynamic Environments using Conformal Prediction.
2023. arXiv: 2210.10254 [cs.RO]. URL: https://arxiv.org/abs/2210.10254 (cit. on

p. 18).
Ning Liu et al. “Learning the Dynamic Treatment Regimes from Medical Registry Data

through Deep Q-network”. In: Scientific Reports 9.1 (2019), p. 1495. DOI: 10.1038/s41598-
018-37142-0 (cit. on p. 1).

Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using Hierarchical Navigable Small World graphs. 2018. arXiv: 1603.09320 [cs.DS]. URL:
https://arxiv.org/abs/1603.09320 (cit. on p. 15).

Valery Manokhin. Awesome Conformal Prediction. Version v1.0.0. ”If you use Awesome
Conformal Prediction, please cite it as below.”. Apr. 2022. DOI: 10.5281/zenodo . 6467205.
URL: https://doi.org/10.5281/zenodo.6467205 (cit. on p. 18).

Huiying Mao, Ryan Martin, and Brian J. Reich. “Valid Model-Free Spatial Prediction”.
In: Journal of the American Statistical Association 119.546 (Jan. 2023), pp. 904-914. 1SSN:
1537-274X. DOI: 10.1080/01621459.2022.2147531. URL: http://dx.doi.org/10.1080/
01621459.2022.2147531 (Cit. on p. 25).

Andrew Kachites Mccallum and Dana Ballard. “Reinforcement learning with selective per-
ception and hidden state”. AAI9618237. PhD thesis. 1996 (cit. on p. 14).

48


http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
https://doi.org/10.1109/CDC56724.2024.10886644
https://doi.org/10.1109/CDC56724.2024.10886644
https://doi.org/10.1111/rssb.12021
https://academic.oup.com/jrsssb/article-pdf/76/1/71/49514328/jrsssb\_76\_1\_71.pdf
https://academic.oup.com/jrsssb/article-pdf/76/1/71/49514328/jrsssb\_76\_1\_71.pdf
https://doi.org/10.1111/rssb.12021
https://arxiv.org/abs/1604.04173
https://arxiv.org/abs/1604.04173
https://arxiv.org/abs/1604.04173
https://arxiv.org/abs/2310.05921
https://arxiv.org/abs/2310.05921
https://arxiv.org/abs/2310.05921
https://youtu.be/Az5BoT7lCYo?si=S8Oi13Qb4OkpDir0&t=1272
https://youtu.be/Az5BoT7lCYo?si=S8Oi13Qb4OkpDir0&t=1272
https://arxiv.org/abs/2210.10254
https://arxiv.org/abs/2210.10254
https://doi.org/10.1038/s41598-018-37142-0
https://doi.org/10.1038/s41598-018-37142-0
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
https://doi.org/10.5281/zenodo.6467205
https://doi.org/10.5281/zenodo.6467205
https://doi.org/10.1080/01621459.2022.2147531
http://dx.doi.org/10.1080/01621459.2022.2147531
http://dx.doi.org/10.1080/01621459.2022.2147531

[52]

[53]

[54]

[55]

Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Na-
ture 518.7540 (Feb. 2015), pp. 529-533. 1sSN: 00280836. URL: http://dx.doi.org/10.
1038/nature14236 (cit. on pp. 1, 4, 6).

Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013. arXiv: 1312.
5602 [cs.LG]. URL: https://arxiv.org/abs/1312.5602 (cit. on p. 6).

Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: CoRR
abs/1312.5602 (2013). arXiv: 1312.5602. URL: http://arxiv.org/abs/1312.5602 (cit. on
p- 1).

Janosch Moos et al. “Robust Reinforcement Learning: A Review of Foundations and Recent
Advances”. In: Machine Learning and Knowledge Extraction 4.1 (2022), pp. 276-315. 1SSN:
2504-4990. DOI: 10.3390/make4010013. URL: https://www.mdpi.com/2504-4990/4/1/13
(cit. on pp. 1, 7, 29, 30).

Stephen M. Omohundro. “Five Balltree Construction Algorithms”. In: 2009. URL: https:
//api.semanticscholar.org/CorpusID:61067117 (cit. on p. 14).

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete Representation
Learning. 2018. arXiv: 1711.00937 [cs.LG]. URL: https://arxiv.org/abs/1711.00937
(cit. on p. 14).

Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
2019. arXiv: 1912.01703 [cs.LG]. URL: https://arxiv.org/abs/1912.01703 (cit. on
p. 29).

Andy Patterson. PyFizedReps: Python Fired Representations. https://github.com/andnp/
PyFixedReps. Version accessed August 2025. 2025 (cit. on p. 29).

F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825-2830 (cit. on p. 29).

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley Series in Probability and Statistics. Wiley, 1994. 1SBN: 978-0-47161977-2. DOI:
10.1002/9780470316887. URL: https://doi.org/10.1002/9780470316887 (Cit. on p. 5).

Antonin Raffin. RL Baselines3 Zoo. https://github.com/DLR-RM/rl-baselines3-zoo.
2020 (cit. on pp. 29, 54).

Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Implementations”.
In: Journal of Machine Learning Research 22.268 (2021), pp. 1-8. URL: http://jmlr.org/
papers/v22/20-1364.html (cit. on pp. 2, 29).

Shyam Sundhar Ramesh et al. Distributionally Robust Model-based Reinforcement Learning
with Large State Spaces. 2023. arXiv: 2309.02236 [cs.LG]. URL: https://arxiv.org/abs/
2309.02236 (cit. on p. 8).

Martin Riedmiller. “Neural Fitted Q Iteration — First Experiences with a Data Efficient
Neural Reinforcement Learning Method”. In: Machine Learning: ECML 2005. Ed. by Joao
Gama et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 317-328. 1SBN: 978-3-
540-31692-3 (cit. on p. 6).

49


http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.3390/make4010013
https://www.mdpi.com/2504-4990/4/1/13
https://api.semanticscholar.org/CorpusID:61067117
https://api.semanticscholar.org/CorpusID:61067117
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://github.com/andnp/PyFixedReps
https://github.com/andnp/PyFixedReps
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/2309.02236
https://arxiv.org/abs/2309.02236
https://arxiv.org/abs/2309.02236

Yaniv Romano, Evan Patterson, and Emmanuel J. Candes. Conformalized Quantile Regres-
sion. 2019. arXiv: 1905.03222 [stat.ME]. URL: https://arxiv. org/abs/1905. 03222
(cit. on p. 12).

G. Rummery and Mahesan Niranjan. “On-Line Q-Learning Using Connectionist Systems”.
In: Technical Report CUED/F-INFENG/TR 166 (Nov. 1994) (cit. on p. 6).

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. 2007. arXiv: 0706.3188
[cs.LG]. URL: https://arxiv.org/abs/0706.3188 (cit. on p. 8).

S Sheng et al. “Safe POMDP online planning among dynamic agents via adaptive conformal
prediction”. In: IEEFE Robotics and Automation Letters 9.11 (2024), pp. 9946-9953 (cit. on
p. 19).

Kegan J. Strawn, Nora Ayanian, and Lars Lindemann. “Conformal Predictive Safety Filter
for RL Controllers in Dynamic Environments”. In: IEEE Robotics and Automation Letters
8.11 (Nov. 2023), pp. 7833-7840. 1SSN: 2377-3774. DOI: 10.1109/1ra.2023.3322644. URL:
http://dx.doi.org/10.1109/LRA.2023.3322644 (cit. on p. 18).

Jiankai Sun et al. “Conformal Prediction for Uncertainty-Aware Planning with Diffusion
Dynamics Model”. In: Advances in Neural Information Processing Systems. Ed. by A. Oh
et al. Vol. 36. Curran Associates, Inc., 2023, pp. 80324-80337. URL: https://proceedings.
neurips . cc/paper _files/paper/2023/file/fe318a2b6c699808019a456b706cd845 -
Paper-Conference.pdf (cit. on p. 18).

Richard S. Sutton. “Dyna, an integrated architecture for learning, planning, and reacting”.
In: SIGART Bull. 2.4 (July 1991), pp. 160-163. 1SsN: 0163-5719. DOI: 10.1145/122344 .
122377. URL: https://doi.org/10.1145/122344.122377 (cit. on p. 57).

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second.
The MIT Press, 2018. URL: http://incompleteideas .net/book/the-book-2nd.html
(cit. on pp. 1, 4, 6, 13, 14).

Muhammad Faaiz Taufiq et al. Conformal Off-Policy Prediction in Contextual Bandits. 2022.
arXiv: 2206.04405 [stat.ML]. URL: https://arxiv.org/abs/2206.04405 (cit. on p. 19).

Sebastian Thrun and Anton Schwartz. “Issues in Using Function Approximation for Rein-

forcement Learning”. In: Oct. 1993 (cit. on pp. 1, 16).

Ryan Tibshirani. Conformal Prediction. Lecture notes, Advanced Topics in Statistical Learn-
ing, Spring 2023. 2023 (cit. on p. 11).

Ryan J. Tibshirani et al. Conformal Prediction Under Covariate Shift. 2020. arXiv: 1904.
06019 [stat.ME]. URL: https://arxiv.org/abs/1904.06019 (cit. on p. 19).

Josh Tobin et al. Domain Randomization for Transferring Deep Neural Networks from Sim-
ulation to the Real World. 2017. arXiv: 1703.06907 [cs.RO]. URL: https://arxiv.org/
abs/1703.06907 (cit. on p. 2).

Mark Towers et al. Gymnasium: A Standard Interface for Reinforcement Learning Environ-
ments. 2024. arXiv: 2407 .17032 [cs.LG]. URL: https://arxiv.org/abs/2407.17032
(cit. on pp. 29, 41).

a0


https://arxiv.org/abs/1905.03222
https://arxiv.org/abs/1905.03222
https://arxiv.org/abs/0706.3188
https://arxiv.org/abs/0706.3188
https://arxiv.org/abs/0706.3188
https://doi.org/10.1109/lra.2023.3322644
http://dx.doi.org/10.1109/LRA.2023.3322644
https://proceedings.neurips.cc/paper_files/paper/2023/file/fe318a2b6c699808019a456b706cd845-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fe318a2b6c699808019a456b706cd845-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fe318a2b6c699808019a456b706cd845-Paper-Conference.pdf
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2206.04405
https://arxiv.org/abs/2206.04405
https://arxiv.org/abs/1904.06019
https://arxiv.org/abs/1904.06019
https://arxiv.org/abs/1904.06019
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032

(78]

[79]

[81]

[82]

John N. Tsitsiklis and Benjamin Van Roy. “An Analysis of Temporal-Difference Learning
with Function Approximation”. In: IEEE Transactions on Automatic Control 42.5 (1997),
pp. 674-690. DOI: 10.1109/9.580874 (cit. on pp. 1, 16).

Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning in a Random
World. Berlin, Heidelberg: Springer-Verlag, 2005. 1SBN: 0387001522 (cit. on pp. 2, 21).

Vladimir Vovk et al. “Nonparametric predictive distributions based on conformal predic-
tion”. In: Proceedings of the Sizth Workshop on Conformal and Probabilistic Prediction and
Applications. Ed. by Alex Gammerman et al. Vol. 60. Proceedings of Machine Learning Re-
search. PMLR, 13-16 Jun 2017, pp. 82-102. URL: https://proceedings.mlr.press/v60/
vovkl7a.html (cit. on p. 21).

Kaixin Wang et al. Bring Your Own (Non-Robust) Algorithm to Solve Robust MDPs by
Estimating The Worst Kernel. 2024. arXiv: 2306.05859 [cs.LG]. URL: https://arxiv.
org/abs/2306.05859 (cit. on pp. 21, 30).

C. J. C. H. Watkins. “Learning from Delayed Rewards”. PhD thesis. King’s College, Oxford,
1989 (cit. on pp. 1, 6).

Tianshu Wei, Yanzhi Wang, and Qi Zhu. “Deep Reinforcement Learning for Building HVAC
Control”. In: Proceedings of the 54th Annual Design Automation Conference 2017. DAC ’17.
Austin, TX, USA: Association for Computing Machinery, 2017. 1SBN: 9781450349277. DOTI:
10.1145/3061639.3062224. URL: https://doi.org/10.1145/3061639.3062224 (cit. on
p- 1).

XiaoDan Wu et al. “A value-based deep reinforcement learning model with human expertise
in optimal treatment of sepsis”. In: NPJ Digital Medicine 6.1 (2023), p. 15. DOI: 10.1038/
s41746-023-00755-5 (cit. on p. 1).

Yifan Wu, George Tucker, and Ofir Nachum. Behavior Regularized Offline Reinforcement
Learning. 2019. arXiv: 1911.11361 [cs.LG]. URL: https://arxiv.org/abs/1911.11361
(cit. on p. 16).

Yingying Zhang, Chengchun Shi, and Shikai Luo. “Conformal Off-Policy Prediction”. In:
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics.
Ed. by Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent. Vol. 206. Proceedings
of Machine Learning Research. PMLR, 25-27 Apr 2023, pp. 2751-2768. URL: https://
proceedings.mlr.press/v206/zhang23c.html (cit. on p. 19).

ol


https://doi.org/10.1109/9.580874
https://proceedings.mlr.press/v60/vovk17a.html
https://proceedings.mlr.press/v60/vovk17a.html
https://arxiv.org/abs/2306.05859
https://arxiv.org/abs/2306.05859
https://arxiv.org/abs/2306.05859
https://doi.org/10.1145/3061639.3062224
https://doi.org/10.1145/3061639.3062224
https://doi.org/10.1038/s41746-023-00755-5
https://doi.org/10.1038/s41746-023-00755-5
https://arxiv.org/abs/1911.11361
https://arxiv.org/abs/1911.11361
https://proceedings.mlr.press/v206/zhang23c.html
https://proceedings.mlr.press/v206/zhang23c.html

Appendix A

Pseudocode

We present pseudocode for both CC-Disc and CC-NN. The full code is available at https:
//github.com/foty-hub/msc_thesis.

Algorithm 1 CC-Disc: Discretised Conformal Calibration

Calibration

Require: «a € [0, 1), nealib, Mincalin, learned DQN Qg, discount factor

=
e e

—_
w

Observe nca)ip transitions on nominal environment and fill replay buffer Do

Define DISCRETISE function and n_features > eg. bins, tile coding, tree
Initialize array Scores[1..n_features] with empty deques, maxlen > minc,p
for transition (s,a,r,s’) € D do = Build calibration sets

€ — Qo(s,a) — (r + vy maxg Qg(s/,a'))
i < DISCRETISE(s, a)
Append € to Scores[i]
for i in n_features do > Compute offsets per discretised state
m =len(Scores[i])
if m > min,;, then
to —[(m+1)(1—-a)]/m
§(s0) Quantile, (Scores[il)

: Set undervisited bin offsets to daliback = Maxs q §(s:a)

Inference - Action Selection

Receive state s from environment
’

a = argmax,, Qq(s,a’) — )
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Algorithm 2 CC-NN: Nearest-Neighbour Conformal Calibration

Calibration

Require: «a € [0,1), ncaib, learned DQN @y, discount factor +, k, max distance quantile de [0,1)

o [(k+1)(1 — a)l/k

Observe nca)ip transitions on nominal environment and fill replay buffer Do

Initialize array Scores[1..n_calib] as zeros

for transition z; = (s,a,7,s’) € Do do > Score each observed state-action pair
Scores[i] « Qy(s,a) — (r + ymaxy Qo(s, a'))

max_distance « Quantile;{(d;—x) 3™ }

> d;_, is distance to the k" neighbour
Compute Spaliback = Max q 65
Inference
Get state s from environment
for a € A do
distances, indices <« neg(s,a) > Get k-nearest neighbours
if max(distances) > max_distance then > Out-of-distribution
669 = Sgaiback
else

() — Quantile, (Scores[indices]) > Compute correction

a = argmax,, Qg(s,a’) — 6(>4)
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Appendix B

Experimental Hyperparameters

B.1 DQN hyperparameters

All hyperparameters for experiments are displayed in Table B.1. Hyperparameters are sourced
from Stable Baselines Zoo [56]. A learning rate of 3e-4 was used for all DDQN and CQL-DQN

runs to achieve more stable learning. The CQL weight parameter 3 is listed in Table B.1.

Hyperparameter ‘ Acrobot Cart Pole Lunar Lander Mountain Car
training_steps 100,000 50,000 100,000 120,000
learning rate 6.3e-4 3.0e-4 6.3e-4 4.0e-3
batch_size 128 64 128 128
buffer_size 50000 100000 50000 10000
learning_starts 0 1000 0 1000
gamma 0.99 0.99 0.99 0.98
target_update_interval | 250 10 250 600
train_freq 4 256 4 16
gradient_steps -1 128 1 8
exploration_fraction 0.12 0.16 0.12 0.20
exploration_final eps 0.10 0.04 0.10 0.07
net_arch [256, 256]  [256, 256] [256, 256] [256, 250]
CQL-pB 1.0 1.0 0.1 2.0

Table B.1: Stable baseline 3 DQN hyperparameters used for each environment.
Hyperparameters are sourced from Raffin [56].

B.2 Conformal Calibration hyperparameters

Parameters for conformal calibration were kept consistent across environments. A full list of

parameters is presented in Table B.3
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Hyperparameter ‘ CC-Disc CC-NN

« 0.01 0.1
Calibration transitions 10,000 10,000
Score function Signed Signed
Return type TD TD
Bins per dimension 6 -

Min. calibration examples | 50 -
Max. calibration examples | 500 -
k - 50
Max. distance quantile - 0.9

Table B.2: List of hyperparameters used in experiments for conformal calibra-
tion. Hyperparameters were kept consistent across experiments and environ-
ments unless noted otherwise. A uniform grid was used as the default discreti-
sation method for CC-Disc.

B.3 Reward Thresholds

In order to identify which seeds to include or exclude when evaluating policies, we use reward
thresholds: if an agent achieves a mean reward above this threshold on the nominal environment

is it considered to solve the environment.

Gym Environment ‘ Reward Threshold 7y

Acrobot-vl -100 -200
MountainCar-v0 -110 -200
CartPole-v1 490 0
LunarLander-v3 200 0

Table B.3: Reward thresholds for the different Gym environments used in eval-
uation.
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Appendix C

Conformal Prediction for World

Models

One early research direction was the application of conformal prediction for a learned dynamics
model, treating next-state predictions as classification over a discrete state space. Using conformal
prediction, we calibrated next-state predictions to produce a set containing the true next state
with a specified miscoverage rate. This could then be used to induce conservatism by acting with
respect to the worst-case outcomes in the prediction set. However we discontinued this research
direction for two reasons; due to the variance in calibration set formation, the true coverage rate
varies, which is problematic if using a greedy policy with respect to world model predictions—a
minor miscalibration leads to extreme conservatism and suboptimal policies. Additionally, most
modern work in world modelling, such as Dreamer [20], uses probabilistic world models which
output a distribution over next states. These are better suited to sampling predictions than
conformal prediction sets which, as a distribution-free method, provide no method for sampling
from them. We found that, when evaluated on the gridworld problem FrozenLake, the conformal
prediction world model was substantially improved by taking a simple expectation over all next
states, rather than acting with respect to the worst outcome in the prediction set. This finding held
on both the nominal environment (see Figure C.1), and the test environment after distribution
shift.
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Figure C.1: Training dynamics of a Dyna-V agent [66] using a one-step world
model for action selection, evaluated on the FrozenLake environment with vary-
ing slip probabilities. The conformalised agent uses conformal prediction to
pessimistically predict, and avoid, the worst-case outcome. The expectation
agent takes an expectation over world model predictions. Plots indicate the
inter-quartile mean of returns with 95% bootstrapped confidence intervals, as
recommended by Agarwal et al. [2].
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Appendix D

Generative AI Disclosure

Generative Al was used in this project for the following purposes:

e OpenAl 03, Ai2 Paper Finder and Gemini 2.5-Pro were employed to find papers and related

methods alongside normal literature review.

e OpenAl GPT-5 and Codex CLI were used for ancillary coding tasks such as styling plots
and adding command-line parsing. Core algorithmic implementations, including baselines,

were written without Al assistance.

e OpenAl GPT-5 and Gemini 2.5-Pro were employed to critique drafts of the written thesis
and contribute a skeleton structure early. The content itself was written and edited by hand

(or by keyboard at least).

e OpenAl GPT-5 was used for some KTEX formatting.
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